

Permanent Magnet Motor Design for Elevator Application Using Induction motor Standard Lamination

Harsh Goswami¹, Parth Bhimani²

¹²Student electrical Engg ,Institute of Technology Nirma University, Ahmedabad ,Gujarat, India.

Abstract - In today's world permanent magnet motor is more used for elevator application because of its feature like high efficiency, high starting torque, and silent working. In this paper design of PM motor is carried out for this rating and finite element analysis is done for design validation by two approach using motor solve. It is very difficult to make different lamination for each different rating of motor. It will increase cost of motor and also it requires time. In this paper induction motor lamination is used for design of PM motor.

k

1. INTRODUCTION

In this paper PM motor for elevator application is designed by two approaches. In first approach rating of PM motor is calculated using below Torque and speed equation. And based on PM motor design calculation PM motor is design. So in this approach one have to manufacture special lamination for PM motor. This will increase money and time consumption.

So to reduce money and time consumption one can design PM motor by fixing Main dimension like Stator outer Diameter and rotor outer diameter according to number of slot and available stator stamping in market. Here interesting things is that we can use induction motor stamping. By fixing above parameter and changing length and aspect ratio one can design PM motor which has same specification like same torque, speed, output power, efficiency and flux density etc.

Hence in second approach after taking rating of PM motor One can directly design PM motor by fixing Stator outer Diameter and rotor outer diameter according to number of slot and available stator stamping in market. Only one condition should be satisfied that is ratio of length and aspect ratio must match with stator outer diameter.

1.1 Requirements of elevator systems

The major requirements in the motor design of gearless elevator systems are torque and speed. These two parameters can be calculated by operating speed, cabin weight capacity, type of suspension and pulley diameter of designed elevator system

For some given elevator specifications such as 680 kg (For 10 people) weight capacity, 1.5 m/s cabin velocity, 2:1

Suspension ratio following motor requirements can be Calculated.

Tmotor = [rpulley x g x (Mcarry) x η / μ]

Where.

Rpulley:

The radius of drive pulley (m) (0.12 m), g: The force of gravity (m/s2) (9.88 m/s2)

Mcarry:

Maximum carrying capacity (kg) (680 kg) μ: The coefficient for suspension type. I for direct Suspension, 2 for 2: 1 suspension. Design was carried out for $\mu = 2$.

 η : Well and rope system efficiency (70%) Tmotor = $[0.12 \times 9.88 \times (680) \times (0.7)/2]$ Tmotor = 279.88 N.m

Motor rated speed;

 $\omega = \mu x (v / rpulley) (rad / s)$

v: cabin vertical velocity = 1.5 m/s

$$\omega = 2 \times (1.5/0.12) = 25 \text{ (rad/s)}$$

 $n = \omega x (60/2 x \pi) (rpm)$

 $n = 25 \times (60/2 \times \pi) = 238.8 \text{ (rpm)}$

Rated power;

Pmotor = T. ω

Pmotor = 279.88 x 25 = 7000 W

1.2 Simple design of PM motor

In first approach, conventional design method is carried out. In which first one has to calculate main dimension of PM motor and design that motor into motor solve software and match result with calculated output. So same processes is carried out below

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 IRJET Volume: 04 Issue: 05 | May -2017

www.irjet.net

p-ISSN: 2395-0072

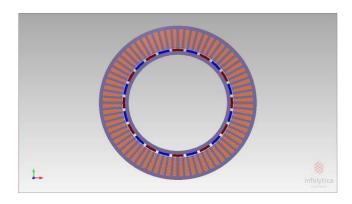
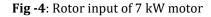


Fig -1: motor solve model of 7 kW motor

Specifications		
Supply voltage	400	
Rated current	15	
Rated speed	239	
Global		
Outer diameter	320	
Air gap thickness	0.877	
Stack length	160	
Description		
Protected dimension method	Automatic	
Rotor		
Rotor location	Interior	
Rotor type	 Surface mounted with radial 	
Number of poles	24	
Stator		
Stator type	🛱 Square	
Number of phases	3	
Number of slots	72	
Mechanical Losses		
Friction loss	0	
Windage loss	0	
Stray loss factor	0	


Fig -2: General input of 7 kW motor

General	
Skew	0
Skew angle	0
Protected dimensions	Back iron depth, Tooth width
Diameters	
😥 Back iron depth	6.9
😥 Inner diameter	260
😟 Outer diameter	320
Teeth	
😟 Bifurcation radius	0
过 Shank length	21.2
👱 Slot area	157
👱 Slot depth	22.9
😥 Tooth edge inset	1.69E-11
过 Tooth gap angle	0.652
过 Tooth gap width	1.48
👱 Tooth tang angle	0
🧕 Tooth tang depth	1.63
进 Tooth width	5
Fillets	
😥 Bottom shaft radius	0.592
😥 Tooth tang radius	0
😟 Top shaft radius	0.592
Viewing Options	

Fig -3: stator input of 7 kW motor

L

General			
Skew	0		
Skew angle	0		
Number of magnets per pole	1		
Rotor overhang	0		
Override with parallel magnetization	False		
Protected dimensions	Core thickness, Magnet angle		
Core			
😥 Core thickness	7.2		
Diameters			
😟 Inner diameter	235		
😥 Outer diameter	258		
😥 Sleeve thickness	0		
Magnets			
😟 Magnet angle	12		
😥 Magnet edge inset	-1.72E-09		
👱 Magnet gap angle	3		
👷 Magnet thickness	4.39		
Fillets			
😥 Magnet tip radius	0		
Viewing Options			
Rotor core transparency	50		
Rotor sleeve transparency	50		
Rotor magnet transparency	50		

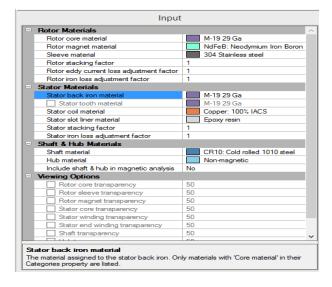


Fig -5: Material

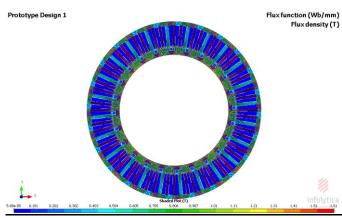


Fig -6: flux density

Fig -7: torque profile

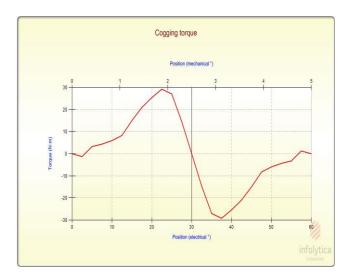


Fig -8: cogging torque

	Prototype Design 1
Torque (N·m)	282
Reluctance torque (N·m)	0.1
Input power (kW)	7.47
Output power (kW)	7.06
Efficiency (%)	94.6
RMS voltage (V)	317
RMS current (A)	15.4
Supply current (A)	18.7
Loss - Total (kW)	0.39

Fig -9: Result of motor solve

2. Design of PM motor by second approach

We have taken the standard stamping for 7 kW motor Stator Outer Diameter Dso = 300 mm Rotor Outer Diameter Dro = 210 mm Number of slot = 72 In second approach one can take induction motor standard stamping and fulfill one condition describe above by changing aspect ratio and length.

Table -1: design varia	ble
------------------------	-----

Quantity	Simple design	Design with standard stamping
Stator outer diameter(Dso)	320 mm	300mm
Rotor outer diameter(Dro)	258 mm	210 mm
Length(L)	160 mm	231 mm
Aspect ratio	0.5	0.77

So from above table it is clear that one can design same rating motor by changing length and aspect ratio and all other parameter is same in both cases.

Specifications			
Supply voltage	400		
Rated current	17		
Rated speed	239.3		
Global	Global		
Outer diameter	300		
Air gap thickness	0.877		
Stack length	231		
Description			
Protected dimension method	nod Automatic		
Rotor			
Rotor location	Interior		
Rotor type	Surface mounted with radial ma		
Number of poles	24		
Stator			
Stator type	💭 Square		
Number of phases	3		
Number of slots	72		
Mechanical Losses			
Friction loss	0		
Windage loss	0		
Stray loss factor	0		

Fig -10: General Input of 7 KW motor with induction motor standard stamping

_					
In	ínput 👻 🕂				
	General				
	Skew	0			
	Skew angle	0			
	Protected dimensions	Back iron depth, Slot area, Tooth			
	Diameters				
	😥 Back iron depth	7			
	🔁 Inner diameter	212			
	😥 Outer diameter	300			
	Teeth				
	😥 Bifurcation radius	0			
	过 Shank length	32.4			
	🕁 Slot area	200			
	过 Slot depth	37			
	😥 Tooth edge inset	1.6E-11			
	过 Tooth gap angle	0.679			
	过 Tooth gap width	1.26			
	过 Tooth tang angle	61.9			
	过 Tooth tang depth	1.34			
	👥 Tooth width	4.9			
	Fillets				
	🔁 Bottom shaft radius	0.556			
	🙀 Tooth tang radius	0			
	😥 Top shaft radius	0.556			
	Viewing Options				
	Stator core transparency	50			
	Stator winding transparency	50			

Fig -11: stator input of 7 KW motor with standard Stamping

-1	General	
	Skew	0
	Skew angle	0
	Number of magnets per pole	1
	Rotor overhang	0
	Override with parallel magnetization	False
	Protected dimensions	Core thickness, Magnet angle,
	Core	
	😥 Core thickness	7
	Diameters	
	过 Inner diameter	187
	😥 Outer diameter	210
	😥 Sleeve thickness	0
	Magnets	
	😥 Magnet angle	12
	😥 Magnet edge inset	-1.97E-09
	逆 Magnet gap angle	3
	😥 Magnet thickness	4.5
	Fillets	
	😥 Magnet tip radius	0
	Viewing Options	
	Rotor core transparency	50
	Rotor sleeve transparency	50
	Rotor magnet transparency	50

Fig -12: Rotor input of 7 KW motor with standard stamping

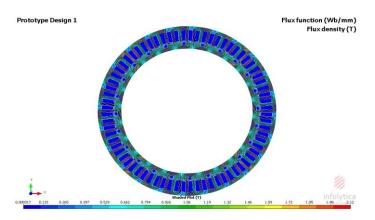


Fig -13: flux density with standard stamping

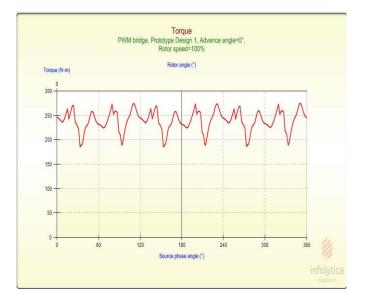
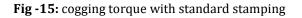
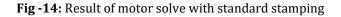




Fig -14: torque profile with standard stamping

	Prototype Design 1
Torque (N·m)	281
Reluctance torque (N·m)	-0.0207
Input power (kW)	7.42
Output power (kW)	7.03
Efficiency (%)	94.8
RMS voltage (V)	326
RMS current (A)	14.9
Supply current (A)	18.5
Loss - Total (kW)	0.385

1.3 Comparison

Table -2: design variable

Quantity	Simple design	Design with standard stamping
Stator outer diameter(Dso)	320 mm	300mm
Rotor outer diameter(Dro)	258 mm	210 mm
Length(L)	160 mm	231 mm
Torque constant	35 N.m/m ³	35 N.m/m ³
Voltage	400 V	400 V
Number of slots	72	72
Number of magnet	24	24

From above table it is clear that there is huge difference between sizes of two motor but in result, both motor gives same output in terms of torque and power.

Table -3: comparison of motor solve resu	ılt
--	-----

Quantity	Simple design	Design with standard stamping
Torque	282 N.m	281 N.m
Output power	7.06 kW	7.03 kW
Efficiency	94.6	94.8
Flux desity in stator yoke	1.45 T	1.4 T
Flux desity in stator teeth	1.66 T	1.64 T
Flux desity in rotor yoke	1.46 T	1.43 T

From above table it is clear that result of both approaches is very nearer to each other. So one can use second approach and design motor for any rating.

3. CONCLUSIONS

From above analysis we can conclude that by using standard stamping of induction motor which is nearest with calculated data can be used to design permanent magnet motor for elevator application by varying length of permanent motor with changing aspect ratio of permanent magnet motor.

So there is no need to make special stamping for calculated diameter which gives us more saving in terms of cost and time.

Hence, we can use only one stamping to manufacture any rating of permanent magnet motor. We only need to make length as variable.

REFERENCES

- [1] D. C. Hanselman," Brushless Permanent Magnet Motor Design", New York: McGrawHill, 1994.
- [2] "Design of Brushless Permenent Magnet Machine", J.Hendershot, T.J.E Miller, Motor Design Book , secound edition, 2010.
- [3] "Comparative Design of Direct Drive PM Synchronous Motors in Gearless Elevator Systems ",Hicret Yetis, Hande Boztepeli, YusufYasa, Istanbul, Turkey, October 2-4,2013
- [4] "Application of Permanent magnet Excited synchronous motor and direct drive elevator system",(In Turkish) ,H.T.Duru, R.Demiroz, Y.Toktas,izmir 2006.
- [5] "A New Configuration of Drive System for High Speed Gearless Elevator",Dae- Woong Chung, Hyung-Min Ryu,
- [6] "Increasing Energy Efficiency in Elevator Systems by Direct Drive and Permanent Magnet Synchronous Machines" (In Turkish), H.T.Duru, RDemiroz, Y.Toktas, I. EVK Sempozyumu, Kocaeli 2005.

BIOGRAPHIES

Harsh .R Goswami is final year student in electrical department in Nirma university, Ahmedabad

Parth R. Bhimani is final year student in electrical department in Nirma university, Ahmedabad