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ABSTRACT: The Serial-out bit level multiplication scheme 
is characterized by an important latency feature. It has an 
ability to sequentially generate an output bit of the 
multiplication result in each clock cycle. However, the 
computational complexity of the existing serial-out bit-level 
multipliers in GF(2m) using normal basis representation, 
limits its usefulness in many applications; hence, an 
optimized serial-out bit-level multiplier using polynomial 
basis representation is needed. In this paper, we propose 
new serial-out bit-level Mastrovito multiplier schemes. We 
show that in terms of the time complexities, the proposed 
multiplier schemes outperform the existing serial-out bit-
level schemes available in the literature. In addition, using 
the proposed multiplier schemes, we present new hybrid-
double multiplication architectures. To the best of our 
knowledge, this is the first time such a hybrid multiplier 
structure using the polynomial basis is proposed. Prototypes 
of the presented serial-out bit-level schemes and the 
proposed hybrid-double multiplication architectures (10 
schemes in total) are implemented over both GF (2163) and 
GF (2233), and experimental results are presented. 
 
Index Terms—serial-out, polynomial basis, bit-level 

multiplier, Mastrovito multiplier, hybrid-double 

multiplication 

 

I. INTRODUCTION 
 
FINITE field arithmetic has been widely applied in 
applications of different fields like error-control coding, 
cryptography, and digital signal processing [1], [2], [3], [4]. 
The arithmetic operations in the finite fields upon 
characteristic two GF(2m) have adopted widespread use in 
public-key cryptography such as point multiplication in 
elliptic curve cryptography [5], [6], and exponentiation-
based cryptosystems [7], [8]. The finite field GF (2m) has 
2m elements and each of its elements can be represented 
by its m binary coordinates based on the choice of field-
generating polynomial. For such a representation, the 

addition is relatively straight-forward by bit-wise XORing 
of the corresponding coordinates of two field elements. On 
the other hand, the multiplication operation requires 
larger and slower hardware. Exponentiation, and 
division/inversion are other complex and time consuming 
operations and they are implemented by the iterative 
application of the multiplication operations. Much of the 
ongoing research in this area is focused on ending new 
architectures to implement the arithmetic multiplication 
operation more efficiently (see for example [9], [10], 
[11]).The implementation of finite field multipliers can be 
categorized, in terms of their structures, into three groups 
of parallel-level, digit-level and bit-level types. The bit-
level multiplier scheme, which processes one bit of input 
per clock cycle, is area-efficient and suitable for resource-
constrained and low-weighted devices. The bit level type 
multiplication algorithms, when the PB is used are 
classified as least significant bit first (LSB-first), and most 
significant bit first (MSB-first) schemes [16]. The bit-level 
multiplier can be further categorized into two types of 
either parallel or serial output. In the traditional parallel-
out bit-level (POBL) multipliers [16], all of the output bits 
of the multiplication (from the first bit to the last bit) are 
generated at the end of the last clock cycle. Serial-out bit-
level (SOBL) multipliers, on the other hand, generate an 
output bit of the product sequentially, after a certain 
number of clock cycles.  Compared to the traditional 
parallel-out architecture multiplication scheme based on 
serial-out architecture  i.e., SOBL  has more advantages. 
For instance, combining a SOBL with a traditional LSB-first 
POBL one, would make fast exponentiation and inversion 
possible [17], [18]author of [19], has proposed a SOBL 
multiplication architecture that is constructed by the 
trinomials and the ω-nomials irreducible polynomials in 
GF (2m) using PB representation. In this paper, alternative 
schemes for the serial-out multiplication in the PB over GF 
(2m) for both trinomial and ω-nomial irreducible 
polynomial are developed. We summarize our 
contributions as follows: 
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• We have proposed a new scheme for the SOBL 
multiplication architecture in the PB over GF (2m) 
for the   ω   nomials, then we further optimized it 
for the irreducible trinomials. Both schemes have 
lower critical path delay compared to previously 
published results 

•  In order to investigate the applicability of the 
proposed SOBL schemes, we employed the 
proposed two SOBL schemes, and the SOBL 
scheme proposed in [19], to present, to our 
knowledge, the first approach for hybrid-double 
multiplication architecture in the PB over GF 
(2m).  

• We extended the traditional POBL multiplier 
schemes presented in [16] to propose two new 
LSB first/MSB-first POBL double multiplication 
architectures, which perform two multiplications 
together after 2m clock cycles.  

• To obtain the actual implementation results, all 
the proposed schemes, i.e., 2 SOBL multipliers, 3 
hybrid-double multiplication architectures, 2 
double multiplication architectures, and the 
counterpart ones, i.e., LSB-first POBL [16], MSB-
first POBL [16], and SOBL scheme proposed in 
[19] are coded in VHDL (10 schemes in total), and 
implemented on ASIC technology over both 
GF(2163) and GF(2233). 

 

II. METHODOLOGY OF THE SYSTEM 

1.  PRELIMINARIES 

The binary extension field GF (2m) can be viewed as an m-
dimensional vector space defined over GF (2) [1]. A set of 
m linearly independent vectors (elements of GF (2m)) is 
chosen to serve as the basis of representation. An explicit 
choice for a basis is the ordered set αm−1, ···, α2, α, 1, 
where α ∈ GF (2m) and is a root of an irreducible 
polynomial P(x). Each element is represented by a 
polynomial of degree m−1, whose coefficients are the 
binary digits 0 or 1. All arithmetic operations are 
performed modulo 2. A straightforward GF (2m) 
multiplication computations consists of two parts, the 
product of two field elements, followed by a modular 
reduction [20], [21]. Suppose A = (am−1, ···, a1, a0), B = 
(bm−1, ···, b1, b0) are two arbitrary field elements, i.e., A, B 
∈ GF(2m), then to obtain the field multiplication of A and 
B, AB is computed first; it is then followed by the modular 
reduction, i.e., C , AB mod P(α). In [14], [15], Mastrovito 
has proposed an efficient dedicated parallel multiplication 
method that combines the two parts of the product and the 

modular reduction into a single step. He showed that the 
coordinates of C are obtained from the matrix-by-vector 
product of 

c = [cm−1, ···, c1, c0]T= M·b,                            (1)  

where T denotes the transposition; the column vector b = 
[bm−1, ···, b1, b0]T contains the coordinates of the 
multiplier B = (bm−1, ···, b1, b0) ∈ GF(2m), and M is an m × 
m binary matrix whose entries depend on the coordinates 
of A ∈ GF(2m). Sunar and Koc¸ [22] have studied the 
Mastrovito matrix M, and have presented a formulation for 
the Mastrovito algorithm using the irreducible trinomials. 
Halbuto˘gullari and Koc¸ in [23] have presented a new 
architecture for the Mastrovito multiplication and have 
also shown that the coefficient of the product AB can be 
obtained from the matrix-by-vector product of 

d=[d2m−2, ···, dm, dm−1, ···, d0] T = Z·b,  

where Z is a 2m−1×m binary matrix whose entries are 

 
                      a0             0          . . .          0          0  

       a1            a0         . . .          0          0  
         Z =          : 

        am-1     am-2            . . .          a1       a0 
 

 
2. NOTATIONS 
 
Let us now introduce the following notations, which will 
be used in this paper: Column vectors are represented by 
small boldfaced characters. Matrices are represented by 
capital boldfaced characters, and to represent the entries 
of a matrix, we use the common notation used in the 
literature such as in [22], [23], [24], [25], and [19]. These 
notations are summarized in TABLE 1. 
 
 TABLE 1: List of notations. 
 

Symbol  Description 
   b, bT Column and row vectors, 

respectively 
M (i, :) The ithrow of matrix M 
M (:, j) The jthcolumn of matrix M 
M (i: j) The entry with position (i,j) of 

the matrix M 
[vj, . . ., vi] The range of bits in the vector 

v from position i to position j, 
j >i. 

[rj, . . . , ri] The range of bits in the 
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register [R] from position i to 
position j, j >i. 

   M[↓ n] A down shift of the matrix M 
by n positions, emptied 
positions after the shifts are 
filled by zeros. 

 M(j,:)[→1] A right shift of the jth row of 
the matrix M by 1position, 
emptied positions after the 
shifts are filled by zeros. 

   v[f0, ↓ 1] A down shift of the vector v 
by one-bit with cell f0 fed in 
its upper-most bit, i.e., for the 
vector v of length l-bits  
 

ei||vT The process of concatenating 
an element ei and a vector v. 

 
3. REDUCTION PROCESS 
 
Let us first define an irreducible polynomial with ω 
nonzero terms, i.e., [19] 
    
w-1 
P(x) = xm+ ∑ xti                                       (3) 
i=1 
Where m/2 > t1 > t2 > ··· > tω−2 > tω−1 = 0. Then from (3), 
we define two new sets: T is a set of degrees of nonzero 
terms in (3), and N consists of ω−1 elements, which are the 
differences between m and the others contains the non-
zero terms in (3), i.e.,T ={0, t1, ···, tω−2}, and  N ={0, ∆1, ···, 
∆ω−2}, where ∆1 = m−tω−2, ∆2 = m−tω−3,···, ∆ω−2 = 
m−t1. In the Mastrovito matrix M, which is shown in fig (1) 
can be deduced by reducing the matrix Z in (2) (3). that the 
entries of the matrix M can be obtained as  
M=(L+Q.U)                                                            (4) 
where L is an m×m lower triangular Toeplitz matrix is an 
(m−1)×m upper triangular Toeplitz matrix 
 
                       a0       0     0     0  . . .   0 
                       a1      a0       0     0  . . .   0 
L=                      :                
                       am-2 am-3  . . .  a1    a0    0 
                       am-1 am-2  . . .  a2    a1  a0                   

 

                                                                                                                                 (5) 

                     0     am-1    am-2     . . .    a1 

                     0      0       am-1        . . .    a2 

U=                 :                                                       
                     0     0       . . .     am-1    am-2 
                    0      0       . . .       0    am-1 

And Q is a reduction matrix, which is formalized in [24], 
[26], and [25] as 
                                                      ^ 

                Q=∑Q[→n]                                            (6) 
                            n∈N 

Where   
   ^ 

                Q = ∑Im*(m-1) [↓t]                                  (7) 
                               t∈T 
Where Im*(m-1) represents an m× (m−1) identity matrix. 
Then, using (6) and (7) the matrix M in (4) can be written 
as [24] 
 
 M = L+S+ ∑   S [↓ t],                           (8) 
 
t∈T-{0} 
Where the matrix S is an m×m upper triangular Toeplitz 
matrix with the follows 
 
                        0      sm-1     sm-2   . . .    s1 

                        0       0        sm-1   . . .    s2 

             S=        :                  (9) 
                        0       0        . . .     0    sm-1 
                        0       0        . . .     0      0 
 
 
Where the row 0 of S, i.e., S (0, :) can be computed as [24] 
S (0, :) = [0, sm-1 . . . s1] = ∑U(0, :) [→n]      (10) 
n∈N 
 
III.PROPOSED SERIAL-OUT BIT-LEVEL MASTROVITO 
MULTIPLICATION ALGORITHM 

 
From (4) and (8), one can define a matrix P as 
 
 P=Q.U=S+∑S[↓t] (11) 
t∈T-{0} 
In (11), the rows produced due to the reductions 
corresponding to the xti terms in (3) are identical to the 
rows produced at the first reduction iteration. Thus, we 
can store the elements of row S (0, :), so that they can be 
added later to obtain the rows ti, 1 ≤i≤ ω −2, of the matrix 
P, i.e., P (ti, :), for ti∈ T − {0}. Then, the rows P (j, :), for 0 ≤ j 
≤ m−1 can be obtained as 
    
                  S(0,:),               for j = 0, 
P(j,:)=      P(j−1,:[→1], for 0<j &j≠ti                      (12) 
                   P(j−1,:)[→1]+S(0,:),  for j = ti,                  
 
for 1 ≤i≤ ω−2.            
From the Toeplitz matrix L, which is shown in (5), one can 
see that the rows L(j, :), for 0 ≤ j ≤ m−1 can be obtained as 
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    [a0, 0 . . . 0],      for j = 0, 
L (j, :)=                                      (13) 
                  L (j-1, :) [aj,→1],    for 0<j≤m-1. 
 
From (12) and (13), the row j of the matrix M in (4), i.e., 
M(j, :), for 0 ≤ j ≤ m−1, is obtained as 
 

           L(0,:)+S(0,:),                  j = 0, 
M(j,:)=             M(j−1,:)[aj,→1],        0<j&j≠ti,(14)                      

M(j−1,:)[aj,→1]+S(0,:), j=ti, 
 
For 1 ≤i≤ ω−2. 
From (10) and (13), one can see that the row 0 of the 
matrix M in (14) can be obtained as 
 
 M(0,:)=L(0,:)+S(0,:)=[a0,sm-1,sm-2,···,s1].     (15) 
 
After calculating M (j, :) and based on (1), one can serially 
obtain cj, for 0 ≤ j ≤ m−1 as 
   
                  cj=M(j,:)·b.                                         (16) 
 
 
IV.PROPOSED SOBL MULTIPLICATION ALGORITHM 
FOR ω-NOMIALS 
 
From (10), (14), (15), and (16) ,we write a algorithm  
which outlines the process of serially generating the 
coordinates C starting from c0 to ending cm−1 for the 
multiplication of the two field elements A and B. 
 
Algorithm1:ProposedSerial-OutBit-Level Mastrovito 
Multiplier for ω-nomials xm+xt1+···+ xtω-2+ 1 
 
Input: The parameters of the ω-nomial irreducible 
polynomial: m, t1, ···, tω−2, 
A =(am−1, ···, a0), B=(bm−1, ···, b0)∈GF (2m). 
Output: cj, where C = (cm−1, ···, c0) = AB mod P (α). 
/* Set signal vectors sT, yT, and zT of length m−1, m−1, and 
m bits, respectively */ 
Initialize: yT= [ym−2, ···, y0] = (am−1, ···, a1);  
zT = [ zm−1, ···, z0] = (bm−1, ···, b0) ; 
sT = [sm−1, ···, s1] = (am−1, ···, a1). 
/* Compute sT = S (0, :) */ 
Step 1: For i = 1 to ω−2 do 
Step1.1:∆i=m−tω−1−i; 
Step1.2:sT=[sm−1,···,s1]+[0,··,0,am−1,···, a∆i+1]; 
Step 2: End For 
 /* Set a signal vector wT of length m−1 bits, and initialize 
it with S (0, :), and set a signal vector xT of length m bits, 
and initialize it with M (0, :) */ 
Step 3: wT←sT ;xT← a0||sT; 

Step 4: For j = 0 to m−1 do 
  /* Compute the inner product: cj = M (j, :) ·b */  
Step 4.1: Output cj = xT •z;   
   /* Update xT with M (j+1, :) */ 
Step 4.2: If j 6= ti−1 Then 
/* M (j+1, :) = M (j, :) [aj+1, → 1] */  
Step 4.2.1:xT← [y0, xm−1, ···, x1]; 
Step 4 .3: Else /* j = ti−1 */ 
   /* M (j+1, :) = M (j, :) [aj+1, → 1] + S (0, :) */ 

Step 4.3.1: xT← [y0, xm−1 + wm−2, ···, x1 + w0]; 
Step 4 .4: End If 
Step 4.5: yT← [y0, ym−2, ···, y1];  
Step 5: End For 

 
Fig. 1: The proposed serial-out bit-level (SOBL) 

 
The proposed serial-out bit-level (SOBL) Mastrovito 
multiplier architecture for the !-nomial. (a) The highlevel 
architecture. (b) The implementation of the control signal 
circuit (CSC) that generates the signals Ctrl1 and Ctrl2 
from the 8-bit binary counter’s registers for the GF(2163) 
field constructed by  
           P(x) = x163 + x7 + x6 + x3 + 1. 
 
V.CONCLUSION 
 
We have presented new hardware schemes for the serial-
out bit-level (SOBL) multiplier in PB representation over 
GF (2m) for both the ω-nomial and the irreducible 
trinomial. Compared to previously published results in 
terms of time complexities, the work presented here 
outperform the existing SOBL multiplier schemes. which 
perform two multiplications after 2m clock cycles. Then, 
we proposed three hybrid-double multiplication 
architectures in PB over GF (2m). These hybrid multiplier 
structures perform two multiplications with latency 
comparable to the latency of a single multiplication, i.e., 
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after m + 1 clock cycles. For the practical purposes, all the 
10 schemes presented in this work have been 
implemented in ASIC technology over both GF (2163) and 

GF (2233), and the area, timing, power consumption, and 
energy results have been presented. 

 
 

VI. SIMULATION RESULTS 
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