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Abstract – Huge information has developed as another 

period of data era and handling. Enormous information 

applications are required to give a great deal of advantages 

and comfort to our lives. Distributed computing is a famous 

framework that has the assets for enormous information 

preparing. As the quantity of cell phones is quick expanding, 

portable distributed computing is turning into a vital piece of 

numerous huge information applications. In this article, we 

propose a novel Map Reduce-based structure to handle geo - 

scattered huge information in portable cloud design. The 

proposed system bolsters basic and also complex operations on 

geo-scattered huge information, and utilizations different 

information collection plans to fulfill distinctive application 

prerequisites. 
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1.INTRODUCTION  

Enormous information takes many structures, 
incorporating messages in interpersonal organizations, 
information gathered from different sensors, caught 
recordings, et cetera. Huge information applications 
intend to gather and break down a lot of information, 
what's more, proficiently concentrate profitable data 
from the information. A current report demonstrates 
that the measure of information on the Web is around 
500 billion GB. With the quick increment of cell phones 
that can perform detecting and get to the Web, a lot of 
information are created day by day. All in all, huge 
information has three components: extensive volume, 
high speed and huge assortment [1]. The Universal 
Information Organization (IDC) anticipated that the 
aggregate sum of information created in 2020 all 
inclusive will be around 35 ZB. Facebook necessities to 
prepare around 1.3 million TB of information every 
month. Numerous new information are created at high 
speed. For instance, more than 2 million messages are 
sent over the Web each second. 
Portability administrations, for example, Google Maps 
and Route Seer-bad habit give advantages and 

accommodation to individuals. These applications are 
enormous information applications in light of the fact 
that the informational collection size is huge and the 
information refresh rate is quick [2]. A lot of new 
portability related information are created each day, 
for example, video observation information gathered 
by top notch cameras at roadsides and intersections. 
Normally, the quickly generated enormous information 
are not transferred to a server farm on the double. 
Rather, the new enormous information is immediately 
put away in nearby servers incidentally. Past research 
takes a shot at huge information for the most part 
study effective handling strategies and scientific 
techniques for huge information in a bunched domain, 
and don't consider a geo-scattered huge information 
situation. The above transportation benefit in view of 
new and verifiable enormous information has a place 
with a geo-dispersed huge information situation. In this 
circumstance, it is a test to effectively deal with a 
demand for geo-scattered huge information 
application. Moreover, unique administration targets 
require distinctive complexities of operations on huge 
information. When all is said in done, operations on 
enormous information can be separated into two 
classifications: straightforward musical show tions and 
complex operations. For instance, recovery has a place 
with straightforward operations, while examination of 
video substance (in light of information mining) is a 
mind boggling operation. A system for efficiently 
handling geo-scattered huge information ought to 
bolster both straightforward and complex operations. 
 Portable distributed computing [3–5] is a rising cloud 
benefit display in light of versatile registering and 
distributed computing. As the processing capacity of 
cell phones expands, portable distributed computing 
can sort out and use calculation assets of disseminated 
cell phones. Another model for versatile distributed 
computing is known as the cloudlet-based portable 
cloud show. The cloudlets [6, 7] are sent close Wi-Fi get 
to focuses (APs) and cell base stations to give cloud 
benefits productively, and diminish the system fetched 
between portable clients and a focal cloud. In the 
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portable cloud architecture, there are a few situations 
where substantial crisp informational indexes (as a 
component of huge information) are created quickly 
and immediately put away in cloudlets, and the new 
information are relocated to the focal cloud 
occasionally. In this circumstance, if a few solicitations 
for enormous information applications come in, the 
regular strategy for transfer ing a lot of new 
information to the server farm is not efficient as far as 
correspondence overhead and reaction time. Most past 
research takes a shot at versatile distributed 
computing dis-cuss how to effectively offload errands 
from cell phones to a cloudlet or a focal cloud keeping 
in mind the end goal to spare cell phone vitality and 
lessen undertaking consummation time. In any case, 
few works examine how to use versatile distributed 
computing to prepare geo-scattered enormous 
information and upgrade reaction time to portable 
clients. To productively prepare geo-scattered 
enormous information utilizing portable distributed 
computing, coordinated effort among hubs is 
important. 
In this article, we propose a novel and adaptable 
system in view of MapReduce to bolster 
straightforward and additionally complex operations 
on geo-scattered huge information. The proposed 
structure is alluded to as the progressed MapReduce 
system (AMF). For a demand with straightforward 
operations, AMF utilizes helpful handling in the 
versatile cloud and MapReduce to prepare geo-
scattered enormous information. To begin with, the 
proposed system naturally separates a challenging task 
into a few branch occupations as indicated by the 
conveyance of info information, and after that each 
branch employment is performed utilizing helpful 
preparing in the portable cloud. For a demand with 
complex operations, AMF extricates the required 
various contributions from geo dispersed huge 
information in parallel, and afterward total separated 
required numerous contributions from various cloud 
hubs. After the collected information are prepared by 
performing complex operations, AMF makes the last 
outcomes and sends them to the client. For complex 
operations, AMF utilizes diverse information 
conglomeration plans for various application 
necessities. For continuous applications, the objective 
is to limit the reaction time to versatile clients. For non-
ongoing applications, AMF makes an exchange off 
between reaction time and correspondence overhead. 
Furthermore, the proposed collection plans depend on 
joint effort among cloud hubs. AMF adaptively uses 
Map Reduce to perform basic operations on geo-

scattered enormous information by distributed and 
parallel processing. In addition, AMF moves forward 
Map Reduce to bolster complex operations on geo-
scattered huge information by accumulation plans. 
 

2. When Map Reduce Meets Geo-Dispersed Big Data 
Map Reduce is a software framework introduced by Google 

to   perform distributed computation on large data sets. Map 

Reduce perform distributed computation on large data sets. 

Map Reduce [8] is a promising computing model for big data 

processing. The MapReduce framework has been used 

widely by any corporations such as Google, Yahoo, and 

Amazon to process big data efficiently. The main idea of the 

MapReduce framework is to split a large job into a number of 

smaller tasks, including mapping and reducing tasks, and 

these tasks are performed independently on different 

worker nodes. Before starting map tasks, input data need to 

be partitioned into several small data blocks of the same size 

ranging from 16 to 64 MB. Each data block is then assigned 

by a master to a worker along with a map operation. The 

mapper (i.e., the worker assigned to a map task) applies a 

map operation to compute intermediate key-value pairs. A 

master is in charge of assigning map and reduce tasks to 

workers. A map operation consists of three functions: map 

function, sort function and combine function. The map 

function can be obtained from the specific operation 

corresponding to a request. The sort function is responsible 

for sorting the intermediate values computed by mappers in 

order to group key-value pairs corresponding to the same 

key. The combine function is utilized to integrate all the 

intermediate values sharing the same key so that the size of 

the intermediate values is reduced. Then the intermediate 

values are partitioned into R blocks by a hash function and 

stored in local disks. In addition, a reduce operation includes 

three functions: shuffle, merge, and reduce. The shuffle 

function enables each reducer to pull its intermediate values 

from local disks. The merge function groups all inter- 

mediate values sharing the same key. The reduce function 

implements the requested simple operation on input data. 

Typical work environments for MapReduce are clustered 

environments in which many machines have stable 

connectivity, high bandwidth, and a shared file system. When 

all of the big data is stored in a single data center, the 

MapReduce framework is simple, flexible, and efficient. 

However, the huge amount of distributed real-time 

information introduces a new scenario. In the new scenario, 

fresh data as a part of big data stored in cloudlets are 

geographically separated from data in the central cloud, and 

migrating a large amount of fresh data to the central cloud 
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may cause a large delay to users. Hence, the conventional 

MapReduce framework for clustered environments is not  

 

 
Figure 1. Mobile cloud architecture. 

 

suitable for the above scenario in terms of network delay. 
Moreover, operations on large data sets supported by 
MapReduce are usually simple mathematical operations such 
as count, sort, and selection. At present MapReduce does not 
support complex operations (e.g., data mining and data 
analysis) on big data very well. Hence, the issue of efficiently 
performing complex operations on geo-dispersed big data in 
the mobile cloud model needs to be solved. 
 

3. Mobile Cloud Architecture for Geo-Dispersed Big 

Data Applications 

Figure 1 shows the mobile cloud architecture that is used to 

provide better support for geo-dispersed big data 

applications. The architecture consists of several cloudlets 

and a central cloud. The central cloud stores part of the big 

data, and the cloudlets have large amounts of fresh data 

(part of the big data), which are uploaded to the central 

cloud periodically to update the data set. The central cloud 

has sufficient computation resources to process all of the big 

data. However, migrating large amounts of fresh data from 

cloudlets to the central cloud may cause long delays. On the 

other hand, a cloudlet has less computation resources than 

the central cloud but very short communication delays to 

mobile users. For some geo- dispersed big data applications 

that require complex mathematical operations, the 

corresponding multiple inputs cannot be partitioned and 

processed by distributed and parallel computing. Currently, 

complex mathematical operations are not well supported by 

conventional MapReduce [9]. In this situation, when a 

request for a geo-dispersed big data application happens, 

migration of a large amount of data is not efficient in terms 

of response time. Hence, the cloudlets should be utilized to 

assist in performing complex operations on geo-dispersed 

big data and reduce response time and the size of a data 

block is bigger than the size of the minimal input unit. In the 

mobile cloud environment, mobile devices play a key role in 

generating big data and requesting big data applications. 

Mobile devices discussed in this article include vehicles and 

small smart mobile terminals, including tablets, smart- 

phones, and so on. For vehicles, there are some cases in 

which data collection rates can outperform the Internet, such 

as video surveillance in buses. At present, many buses have 

installed high-definition camera systems to monitor in-bus 

conditions. Traditionally, every bus needs a very large-

volume hard drive to store video content for a few days. 

Then the video content is checked in an offline manner [5]. 

In mobile cloud architecture, cloudlets can be used to store 

the rapidly generated video surveillance content to 

implement timely video content processing and save the 

high cost of large-volume hard drives. In this case, 

preprocessing using cloudlets can reduce the communication 

delay for delivering a large amount of data to a central cloud 

for complex operations. In addition, for simple operations, 

distributed and parallel computing using cloudlets and a 

central cloud can decrease the response time of a request. 

This mobile cloud architecture is flexible and advantageous 

in supporting geo-dispersed big data applications for mobile 

users. First, the architecture contains two layers of clouds 

that are in different locations. The central cloud is usually 

distant from mobile users. Cloudlets are deployed near 

mobile users to provide services quickly. For instance, a 

mobile user can collect and upload surrounding real-time 

information to a nearby cloudlet, and then other mobile 

users arriving at the same or neighboring cloudlet are able to 

retrieve and down-load recent data fast. Second, cloudlets 

reduce the workload of the central cloud so that tasks in the 

central cloud can be performed faster. Third, a seamless 

connection between mobile devices and cloudlets can be 

accomplished by hybrid wireless communication 

technologies such as Wi-Fi and cellular 3G/4G. For example, 

a mobile device equipped with standard wireless interface 

can access to a nearby cloudlet through Wi-Fi AP or cellular 

base stations. complex algorithm with complete inputs. 

Second, a cloud per-forming the complex algorithm on 

multiple inputs should guarantee that the entire operating 

procedure of the complex algorithm runs correctly. Due to 

some inherent attributes of complex mathematical 

operations, partitioning multiple inputs or the algorithm into 

several parts for parallel computing usually does not work. 

Hence, given all inputs, a complex algorithm that can process 

the inputs and create results correctly should be performed 

in one machine rather than a cluster of machines. 
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Figure 2. Extraction module and aggregation 
operations in AMF. 

 
4. The Advanced MapReduce Framework 

In this article, we propose a novel and flexible framework, 

AMF, based on MapReduce to process geo-dispersed big 

data. Different from the conventional MapReduce framework 

in a clustered environment, AMF focuses on supporting com-

plex mathematical operations and efficiently performing 

simple operations on geo-dispersed big data. AMF combines 

cooperative processing in a mobile cloud with MapReduce to 

efficiently process geo-dispersed big data. In this article, we 

mainly consider the case in which partial or complete large 

volumes of input data are promptly stored in cloudlets. In 

addition, we assume that both cloudlets and the central 

cloud have sufficient computation resources to perform 

simple and complex operations. The specific method of AMF 

is laid out below. 

 

5. Features of Complex Mathematical Operations on 

Geo-Dispersed Big Data 

Complex mathematical operations on normal data can be 

abstracted as a complex algorithm that can process multiple 

inputs. We discuss the features of complex mathematical 

operations on geo-dispersed big data in the following. First, 

finding multiple required inputs is critical for performing 

complex mathematical operations efficiently on big data 

because many irrelevant data are included in the original 

input data. In addition, the original input data that contain 

the multiple required inputs are very likely located in differ-

ent clouds due to geo-dispersed big data. Therefore, aggrega-

tion of geo-dispersed multiple inputs needs to be 

accomplished in order to obtain the complete inputs. Aggre-

gation in this article means transferring geo-dispersed multi-

ple required inputs to a cloud that can perform the 

requested complex algorithm with complete inputs. Second, 

a cloud per-forming the complex algorithm on multiple 

inputs should guarantee that the entire operating procedure 

of the complex algorithm runs correctly. Due to some 

inherent attributes of complex mathematical operations, 

partitioning multiple inputs or the algorithm into several 

parts for parallel computing usually does not work. Hence, 

given all inputs, a complex algorithm that can process the 

inputs and create results correctly should be performed in 

one machine rather than a cluster of machines. 

 

6. Performing Complex Operations in AMF 

AMF mainly utilizes distributed extracting to decrease the 

size of data that needs to be aggregated and processed. First, 

multiple required inputs need to be extracted from large 

amounts of original input data so that the size of input data 

is reduced. In other words, extracting multiple required 

inputs means refining original input data. Due to the reduced 

size, the time to transfer the refined input data is less than 

that of the original input data. AMF employs distributed and 

parallel computing to extract multiple required inputs from 

the original input data (geo-dispersed big data). Second, the 

multiple inputs are aggregated to guarantee the complete 

inputs. Third, the requested complex mathematical 

operations are performed in a cloud node. 

 

As shown in Fig. 2, AMF automatically divides the entire 

extraction job into several branch jobs by distributed 

extracting in each cloud. A branch job consists of extract 

operations and the original input data. Before starting the 

extract task, 

the original input data needs to be partitioned into several 

small data blocks of the same size  and the size of a data 

block is bigger than the size of the minimal input unit. Each 

data block is then assigned to an extractor along with an 

extraction operation. The extractor applies the extraction 

function to obtain some of the required inputs. The 

extraction function can be obtained from the specific request 

for a big data application. After the entire extraction job is 

done, an aggregation of the multiple required inputs needs to 

be performed to create the complete inputs Once the 

aggregation of the geo-dispersed multiple inputs is done in a 

cloud, the corresponding cloud starts to perform complex 

mathematical operations on the inputs. As shown in Fig. 3, 

the complete inputs cannot be partitioned and are sent to an 

analyzer directly. The analyzer applies an analysis function 

to obtain the final results. The analysis function is an 

algorithm with complex mathematical operations. As shown 

in Fig. 4, the proposed framework employs cooperative 

processing in mobile cloud and MapReduce to perform 

simple operations on geo- dispersed big data. First, the 

proposed framework automatically divides a big job into 
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several branch jobs according to the distribution of input 

data, and then each branch job is performed using 

cooperative processing in the mobile cloud. The main idea of 

cooperative processing is to leverage a central cloud to 

accelerate processing and reduce response time. When a 

cloud node starts to perform simple operations on input 

data, MapReduce is utilized to perform computing in parallel. 

We divide simple operations into two categories. For simple 

operations in the first category, the distributed intermediate 

results do not need to be aggregated for further processing 

such as search operation. For the second category, the 

distributed intermediate results need to be aggregated and 

processed further for instance sort operation. First, we 

demonstrate our method of performing simple operations in 

the first category. Considering the fact that the data sizes of 

the processed results are normally small, the communication 

delay for delivering the final results is negligible compared 

to the computing time of the large amount of input data. As 

the intermediate results in the first category are part of the 

final results, the corresponding communication delay is also 

negligible. The proposed cooperative processing makes 

cloudlets allocate a number of chunks of input data to the 

central cloud. In other words, the total tasks are divided and 

processed in parallel by cloudlets and the central cloud. 

While a cloudlet is  

 
Figure 3. Analysis module in AMF. 

 
Figure 4. Simple operations in AMF. 

transmitting input data to the central cloud, the cloudlet is 

also processing the input data except the data allocated to 

the central cloud. When both the cloudlets and the central 

cloud finish their own processing, the complete final results 

are created. Our method calculates the amount of data 

chunks allocated to the central cloud in order to reduce the 

total response time. We give notation definition in our 

scheme as follows. Let a denote the time to execute the 

simple operations on a single chunk of data in a cloudlet, b 

denote the time to exe-cute the simple operations on a single 

chunk of data in the central cloud, and c denote the time to 

transfer one single chunk from a cloudlet to the central 

cloud. If the total amount of chunks of input data in a 

cloudlet is m, and the number of chunks allocated to central 

cloud is n, the time to process total time to transmit n chunks 

through a WAN and process them using the central cloud is 

denoted as T2
p. Thus, for performing simple operations on 

input data in a cloudlet, the total response time of 

cooperative processing is: 

Tc = min(max(T1
p, T2

p)). 

In Eq. 1, T1
p = (m – n)a and T2

p = nc + nb. When 

 

     
the minimal value of max(T1

p, T2
p) can be acquired. When big 

data is quickly stored in distributed cloudlets, each cloudlet 

independently calculates its own Tc and performs simple 

operations by cooperative processing. Once some 

intermediate results are generated in a node, they are 

directly transmitted to mobile users as a part of the final 

results. Second, we demonstrate our method to perform 

simple operations in the second category. Like the method in 

the first category, the proposed cooperative processing 

makes cloudlets allocate a number of chunks of input data to 

the central cloud to implement parallel computing. When 

both the cloudlets and the central cloud finish their own 

processing, the aggregation of intermediate results is 

started. Our method calculates the amount of chunks of data 

allocated to he central cloud and the corresponding minimal 

aggregation time in order to reduce the total response time. 

We give notation definition in our scheme as follows. Let G1 

denote the data size of intermediate results corresponding to 

(m – n) chunks in the cloudlet, and G2 denote the data size of 

intermediate results corresponding to n chunks in the 

central cloud. Let T1
a denote the time to aggregate 

intermediate results and create the final results in the 
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cloudlet, and T2
a denote the time to aggregate intermediate 

results and create the final results in the central cloud. For 

other notations, we still use the above definition such as a, b, 

and c. 

Considering the fact that the data sizes of the final results are 

normally small, the communication delay for delivering the 

(m – n) chunks using the cloudlet is denoted as T1
p, and the 

final results is negligible. 

 
Figure 5. Response time using cooperative processing. 

 

Equation 2 demonstrates our method of calculating the 

response time in the case where the complete input data is 

only stored in a cloudlet. So the corresponding total 

response time of cooperative processing is 

 

Tc = min(max(T1
p, T2

p)) + min(T1
a, T2

a). (2) 

In Eq. 2, the minimal value of max(T1
p, T2

p) can be acquired 

as in Eq. 1. Let s denote the size of a chunk. Hence, 

 

 
and T2

a can also be obtained. We use a function f(x) to 

describe the relationship between the size of the processed 

results and the size of the input data, which is denoted as x. 

For different applications, the corresponding f(x) is different. 

Machine learning can be used to establish the function f(x). 

In this article, we do not specifically discuss how to establish 

f(x), but give a method to calculate the sizes of the processed 

results of input chunks (m – n) in the cloudlet and input 

chunk n in the central cloud (i.e., G1 and G2). Therefore, 

through the initial values m, s, f(x), and n, we can calculate 

the values of G1 and G2. Then, min(T1
a, T2

a) can be obtained. 

Thus, the total response time Tc of cooperative processing 

can be calculated when a request with simple operations 

happens. At last, we compare the response time 

corresponding to only using the cloudlet ma with the Tc, the 

processing method corresponding to the lower response 

time is selected and per-formed. For distributed input data 

stored in selected and per-formed. For distributed input data 

stored in several cloudlets, we demonstrate our methods to 

perform simple operations in the second category as follows 

We consider the case in which the complete input data is 

stored in two cloudlets, and the cloudlets have different 

input data corresponding to m1 chunks and m2 chunks. Let ai 

denote the time to execute the simple operations on a single 

chunk of data in cloudlet i, Ti
c the total response time calcu-

lated by Eq. 2 corresponding to cloudlet i, and d denote the 

time to transfer one single chunk from one cloudlet to anoth-

er. For other notations, we still use the above definitions 

such as b and c. First, each cloudlet independently calculates 

its own Ti
c and miai by our above method and determines the 

processing method according to the respective response 

time. After the first step, intermediate results corresponding 

to input data from different cloudlets are created, and they 

may be distributed at different nodes due to cooperative 

processing. Second, according to the distribution of the 

intermediate results, calculate the aggregation time in each 

candidate aggregation node i which has partial intermediate 

results or is the central cloud. The calculation of total 

response time can be done in the central cloud or cloudlets. 

Before the calculation, the initial values including the 

function f(x) need to be shared among these computing 

nodes. Based on various aggregation times and processing 

times in different aggregation nodes, the respective total 

response time Ti
b can be obtained. Taking the case in Fig. 5 as 

an example, where the intermediate results f(m1) and f(m2) 

are created in cloudlets 1and 2, respectively, using Eq. 2, the 

total response time corresponding to aggregation node 

cloudlet 1 is 

 

T1
b = max(T2

c + f(m2)d, T1
c) + (f(m1) + f(m2))a1 

 

For brevity, the total response times, T2
b and T3

b, 

corresponding to aggregation node cloudlet 2 and the central 

cloud, respectively, are not demonstrated in detail. At last, 

the processing method and the aggregation node 

corresponding to the response time min(T1
b, T2

b, T3
b) are 

performed and select-ed. For other cases where distributed 

input data is stored in several cloudlets, the computing 

method is the same, and the processing method 

corresponding to the lower response time can be 

determined when a request with simple operations in the 

second category happens. Next, we consider the case in 

which both cloudlets and the central cloud have a part of 

large volumes of input data. We assume that the complete 

input data is stored in two cloudlets and the central cloud, 

and the data size is m1, m2, and m3, respectively. First, each 

cloudlet independently calculates its own Ti
c and m iai by Eq. 

2 and determines the processing method according to 

the respective response time. Because the input data m3 is 
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pro-cessed by the central cloud, the corresponding 

processing time is m3b. Second, according to the distribution 

of the intermediate results, calculate the total response time 

Ti
b in each candidate aggregation node i that has partial 

intermediate results or is the central cloud. At last, the 

processing method and the aggregation node co 

corresponding to the minimal response time are performed 

and selected. 

 

7. Efficient Aggregation Schemes 
The aggregation operation is a key step in performing com-

plex mathematical operations because the required multiple 

inputs are geo-dispersed. Aggregating large amounts of 

multiple inputs may cause long delay for users. If the size of 

aggregated multiple inputs is big, the transmission time and 

cost can be reduced by an efficient aggregation scheme, 

which can improve the performance of AMF. We propose 

two types of aggregation scheme to support real-time and 

non-real-time geo-dispersed big data applications, 

respectively. Since real-time applications require smaller 

response time, the corresponding aggregation scheme is 

referred to as a dynamic aggregation scheme, which aims to 

reduce response time. On the other hand, for non-real-time 

applications, our proposed aggregation schemes aim to 

finish the requested tasks in a relatively longer time but with 

low cost, and the corresponding aggregation scheme is 

referred to as planned aggregation. 
 

In the dynamic aggregation scheme, whenever a cloud 

node finishes extraction operation, it transfers the extracted 

multiple inputs and the corresponding size to other cloud 

nodes involved in the entire job. When all required multiple 

inputs are aggregated in a cloud node, the cloud node starts 

to per-form analysis operation After a cloud node finishes an 

analysis operation in the shortest time, it informs other 

cloud nodes with a state message including the original user 

request and final results. When a cloud node receives a state 

message, if it is working on the same user request with the 

received state message, the cloud node ends all the 

operations caused by the same user request immediately. 

Due to the different computing capability of each cloud node, 

the respective time to extract required multiple inputs from 

a large amount of data is different. The dynamic aggregation 

scheme reactively carries the next task when the extraction 

of required multiple inputs in a cloud node is finished. 

Hence, the minimal aggregation time can be achieved by the 

dynamic aggregation scheme. 

 

 

Figure 6. Simulation results of aggregation schemes: a) 

aggregation time; b) communication overhead. 

 

The state message can save some communication and 

computation cost when the final results are obtained in the 

shortest time. In the planned aggregation scheme, when all 

cloud nodes involved in a big job finish their own extraction 

operation, they start the planned aggregation scheme. In 

other words, after the slowest extraction operation is 

finished, the aggregation scheme starts. First, each cloud 

node transfers the data size of the extracted multiple inputs 

to other cloud nodes. Second, each cloud node finds the 

maximal size of extracted multiple inputs among all cloud 

nodes, and the cloud node that contains the maximal-size 

extracted multiple inputs is selected as the aggregation node. 

Third, each cloud node excluding the aggregation node 

transfers extracted inputs to the aggregation node. The 

planned aggregation scheme per-forms aggregation 

operation with minimal communication overhead. For non-

real-time geo-dispersed big data applications, we assume 

that the analysis time and extraction time at each cloud node 

are acceptable to users. 

 

We use NS-2 for simulation. Input data is distributed in two 

cloudlets and a central cloud. For evaluating performance of 

our aggregation schemes, we simulate two cases where the 

size of total extracted input data is 150 MB and 300 MB, 

respectively. In each case, we consider two types of 

distribution of extracted input data. For the first distribu-

tion of case 1, cloud1et 1 finishes its extract operations in 15 

s, and the extracted input data is 25 MB. Cloud1et 2 finishes 

its extract operations in 25 s, and the extracted input data is 

50 MB. The central cloud finishes its extract operations in 35 

s, and the extracted input data is 75 MB. For the second 

distribution of case 1, the time to extract input data is the 

same with the first distribution. The extracted input data in 

cloudlet 1, cloudlet 2, and the central cloud is 75 MB, 50 MB, 

and 25 MB, respectively. In case 2, the time to extract input 
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data is the same as in case 1. For the first distribution of case 

2, the extracted input data in cloudlet 1, 

cloudlet 2, and the central cloud is 50 MB, 100 MB, and 150 

MB, respectively. For the second distribution of case 2, the 

extracted input data in cloudlet 1, cloudlet 2, and the central 

cloud is 150 MB, 100 MB, and 50 MB, respectively. The link 

speed between cloudlets is 10 Mb/s corresponding to a LAN. 

The upstream link speed (i.e., the link from each cloudlet to 

the central cloud) is in the range of [1.3, 3.8] Mb/s, and the 

downstream link speed is in the range of [3.0, 4.1] Mb/s. We 

calculate aggregation time using the difference between the 

time when all extracted input data is aggregated in a node 

and the time when a request with complex operations 

happens. Figure 6 compares the aggregation time and 

communication overhead for three aggregation schemes 

(dynamic aggregation, planned aggregation, and random 

aggregation). The random aggregation scheme randomly 

selects a cloud node as the aggregation node when a request 

with complex operations arrives. In the random aggregation 

scheme, when a cloud node finishes its extract operations, it 

starts to transfer extracted input data to the selected 

aggregation node. The horizontal axis of Fig. 6 represents the 

size of the total extracted input data. The simulation results 

show that the dynamic aggregation scheme achieves the 

shortest aggregation time of the three schemes, and the 

planned aggregation scheme incurs less communication 

overhead than the others. 

 

8. A Geo-Dispersed Big Data Application Based on 

the Proposed Framework 
In this section, we consider a geo-dispersed big data applica-

tion for analyzing vehicles to support an intelligent 

transportation system. The corresponding input data is a 

large amount of video surveillance data. The application is 

able to analyze traffic and identify a specific vehicle 

according to its color and license number. The video 

surveillance data is collected by high-definition cameras at 

roadsides and junctions. When a request happens, first AMF 

extracts the pictures from the original video surveillance 

data stored in several cloudlets according to the specified 

color of the request. Then AMF extracts the images from the 

extracted vehicle pictures according to the specified license 

number. At last, the extracted license images and the 

corresponding position information are aggregated and 

analyzed to identify the corresponding travel trajectory. 

 

9. CONCLUSIONS 

In this article, first we talk about the test in using the 

portable cloud to prepare geo-scattered enormous 

information. At that point we star represent a novel and 

adaptable structure in light of MapReduce to bolster 

intricate and also straightforward operations on geo-

scattered enormous information. The proposed system, AMF, 

utilizes parallel processing in MapReduce to remove 

different contributions for complex operations while having 

the capacity to suitably total and break down geo-scattered 

huge information. For basic operations, AMF adaptively uses 

coordinated effort among cloud hubs and MapReduce to 

productively handle geo-dispersed enormous information. 

For complex operations on geo-scattered enormous 

information, AMF utilizes distinctive accumulation plans to 

meet different application necessities. For constant 

applications, limiting reaction time to portable clients is 

accomplished. For non-ongoing applications, AMF makes an 

exchange off between reaction time and correspondence cost 
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