
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2900

Analyzing traffic and identify a specific vehicle using advanced
Map Reduce Technique

 Amulya N1, Dr.Prakasha S2

1 M. Tech Student, Department of Computer Network & Engineering, RNS institute of Technology, Bangalore
2Professor and Head, Department of Computer Network & Engineering, RNS institute of Technology, Bangalore

---***---
Abstract – Huge information has developed as another

period of data era and handling. Enormous information

applications are required to give a great deal of advantages

and comfort to our lives. Distributed computing is a famous

framework that has the assets for enormous information

preparing. As the quantity of cell phones is quick expanding,

portable distributed computing is turning into a vital piece of

numerous huge information applications. In this article, we

propose a novel Map Reduce-based structure to handle geo -

scattered huge information in portable cloud design. The

proposed system bolsters basic and also complex operations on

geo-scattered huge information, and utilizations different

information collection plans to fulfill distinctive application

prerequisites.

Key Words: Map Reduce, geo scattered,
distributed computing.

1.INTRODUCTION

Enormous information takes many structures,
incorporating messages in interpersonal organizations,
information gathered from different sensors, caught
recordings, et cetera. Huge information applications
intend to gather and break down a lot of information,
what's more, proficiently concentrate profitable data
from the information. A current report demonstrates
that the measure of information on the Web is around
500 billion GB. With the quick increment of cell phones
that can perform detecting and get to the Web, a lot of
information are created day by day. All in all, huge
information has three components: extensive volume,
high speed and huge assortment [1]. The Universal
Information Organization (IDC) anticipated that the
aggregate sum of information created in 2020 all
inclusive will be around 35 ZB. Facebook necessities to
prepare around 1.3 million TB of information every
month. Numerous new information are created at high
speed. For instance, more than 2 million messages are
sent over the Web each second.
Portability administrations, for example, Google Maps
and Route Seer-bad habit give advantages and

accommodation to individuals. These applications are
enormous information applications in light of the fact
that the informational collection size is huge and the
information refresh rate is quick [2]. A lot of new
portability related information are created each day,
for example, video observation information gathered
by top notch cameras at roadsides and intersections.
Normally, the quickly generated enormous information
are not transferred to a server farm on the double.
Rather, the new enormous information is immediately
put away in nearby servers incidentally. Past research
takes a shot at huge information for the most part
study effective handling strategies and scientific
techniques for huge information in a bunched domain,
and don't consider a geo-scattered huge information
situation. The above transportation benefit in view of
new and verifiable enormous information has a place
with a geo-dispersed huge information situation. In this
circumstance, it is a test to effectively deal with a
demand for geo-scattered huge information
application. Moreover, unique administration targets
require distinctive complexities of operations on huge
information. When all is said in done, operations on
enormous information can be separated into two
classifications: straightforward musical show tions and
complex operations. For instance, recovery has a place
with straightforward operations, while examination of
video substance (in light of information mining) is a
mind boggling operation. A system for efficiently
handling geo-scattered huge information ought to
bolster both straightforward and complex operations.
 Portable distributed computing [3–5] is a rising cloud
benefit display in light of versatile registering and
distributed computing. As the processing capacity of
cell phones expands, portable distributed computing
can sort out and use calculation assets of disseminated
cell phones. Another model for versatile distributed
computing is known as the cloudlet-based portable
cloud show. The cloudlets [6, 7] are sent close Wi-Fi get
to focuses (APs) and cell base stations to give cloud
benefits productively, and diminish the system fetched
between portable clients and a focal cloud. In the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2901

portable cloud architecture, there are a few situations
where substantial crisp informational indexes (as a
component of huge information) are created quickly
and immediately put away in cloudlets, and the new
information are relocated to the focal cloud
occasionally. In this circumstance, if a few solicitations
for enormous information applications come in, the
regular strategy for transfer ing a lot of new
information to the server farm is not efficient as far as
correspondence overhead and reaction time. Most past
research takes a shot at versatile distributed
computing dis-cuss how to effectively offload errands
from cell phones to a cloudlet or a focal cloud keeping
in mind the end goal to spare cell phone vitality and
lessen undertaking consummation time. In any case,
few works examine how to use versatile distributed
computing to prepare geo-scattered enormous
information and upgrade reaction time to portable
clients. To productively prepare geo-scattered
enormous information utilizing portable distributed
computing, coordinated effort among hubs is
important.
In this article, we propose a novel and adaptable
system in view of MapReduce to bolster
straightforward and additionally complex operations
on geo-scattered huge information. The proposed
structure is alluded to as the progressed MapReduce
system (AMF). For a demand with straightforward
operations, AMF utilizes helpful handling in the
versatile cloud and MapReduce to prepare geo-
scattered enormous information. To begin with, the
proposed system naturally separates a challenging task
into a few branch occupations as indicated by the
conveyance of info information, and after that each
branch employment is performed utilizing helpful
preparing in the portable cloud. For a demand with
complex operations, AMF extricates the required
various contributions from geo dispersed huge
information in parallel, and afterward total separated
required numerous contributions from various cloud
hubs. After the collected information are prepared by
performing complex operations, AMF makes the last
outcomes and sends them to the client. For complex
operations, AMF utilizes diverse information
conglomeration plans for various application
necessities. For continuous applications, the objective
is to limit the reaction time to versatile clients. For non-
ongoing applications, AMF makes an exchange off
between reaction time and correspondence overhead.
Furthermore, the proposed collection plans depend on
joint effort among cloud hubs. AMF adaptively uses
Map Reduce to perform basic operations on geo-

scattered enormous information by distributed and
parallel processing. In addition, AMF moves forward
Map Reduce to bolster complex operations on geo-
scattered huge information by accumulation plans.

2. When Map Reduce Meets Geo-Dispersed Big Data
Map Reduce is a software framework introduced by Google

to perform distributed computation on large data sets. Map

Reduce perform distributed computation on large data sets.

Map Reduce [8] is a promising computing model for big data

processing. The MapReduce framework has been used

widely by any corporations such as Google, Yahoo, and

Amazon to process big data efficiently. The main idea of the

MapReduce framework is to split a large job into a number of

smaller tasks, including mapping and reducing tasks, and

these tasks are performed independently on different

worker nodes. Before starting map tasks, input data need to

be partitioned into several small data blocks of the same size

ranging from 16 to 64 MB. Each data block is then assigned

by a master to a worker along with a map operation. The

mapper (i.e., the worker assigned to a map task) applies a

map operation to compute intermediate key-value pairs. A

master is in charge of assigning map and reduce tasks to

workers. A map operation consists of three functions: map

function, sort function and combine function. The map

function can be obtained from the specific operation

corresponding to a request. The sort function is responsible

for sorting the intermediate values computed by mappers in

order to group key-value pairs corresponding to the same

key. The combine function is utilized to integrate all the

intermediate values sharing the same key so that the size of

the intermediate values is reduced. Then the intermediate

values are partitioned into R blocks by a hash function and

stored in local disks. In addition, a reduce operation includes

three functions: shuffle, merge, and reduce. The shuffle

function enables each reducer to pull its intermediate values

from local disks. The merge function groups all inter-

mediate values sharing the same key. The reduce function

implements the requested simple operation on input data.

Typical work environments for MapReduce are clustered

environments in which many machines have stable

connectivity, high bandwidth, and a shared file system. When

all of the big data is stored in a single data center, the

MapReduce framework is simple, flexible, and efficient.

However, the huge amount of distributed real-time

information introduces a new scenario. In the new scenario,

fresh data as a part of big data stored in cloudlets are

geographically separated from data in the central cloud, and

migrating a large amount of fresh data to the central cloud

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2902

may cause a large delay to users. Hence, the conventional

MapReduce framework for clustered environments is not

Figure 1. Mobile cloud architecture.

suitable for the above scenario in terms of network delay.
Moreover, operations on large data sets supported by
MapReduce are usually simple mathematical operations such
as count, sort, and selection. At present MapReduce does not
support complex operations (e.g., data mining and data
analysis) on big data very well. Hence, the issue of efficiently
performing complex operations on geo-dispersed big data in
the mobile cloud model needs to be solved.

3. Mobile Cloud Architecture for Geo-Dispersed Big

Data Applications

Figure 1 shows the mobile cloud architecture that is used to

provide better support for geo-dispersed big data

applications. The architecture consists of several cloudlets

and a central cloud. The central cloud stores part of the big

data, and the cloudlets have large amounts of fresh data

(part of the big data), which are uploaded to the central

cloud periodically to update the data set. The central cloud

has sufficient computation resources to process all of the big

data. However, migrating large amounts of fresh data from

cloudlets to the central cloud may cause long delays. On the

other hand, a cloudlet has less computation resources than

the central cloud but very short communication delays to

mobile users. For some geo- dispersed big data applications

that require complex mathematical operations, the

corresponding multiple inputs cannot be partitioned and

processed by distributed and parallel computing. Currently,

complex mathematical operations are not well supported by

conventional MapReduce [9]. In this situation, when a

request for a geo-dispersed big data application happens,

migration of a large amount of data is not efficient in terms

of response time. Hence, the cloudlets should be utilized to

assist in performing complex operations on geo-dispersed

big data and reduce response time and the size of a data

block is bigger than the size of the minimal input unit. In the

mobile cloud environment, mobile devices play a key role in

generating big data and requesting big data applications.

Mobile devices discussed in this article include vehicles and

small smart mobile terminals, including tablets, smart-

phones, and so on. For vehicles, there are some cases in

which data collection rates can outperform the Internet, such

as video surveillance in buses. At present, many buses have

installed high-definition camera systems to monitor in-bus

conditions. Traditionally, every bus needs a very large-

volume hard drive to store video content for a few days.

Then the video content is checked in an offline manner [5].

In mobile cloud architecture, cloudlets can be used to store

the rapidly generated video surveillance content to

implement timely video content processing and save the

high cost of large-volume hard drives. In this case,

preprocessing using cloudlets can reduce the communication

delay for delivering a large amount of data to a central cloud

for complex operations. In addition, for simple operations,

distributed and parallel computing using cloudlets and a

central cloud can decrease the response time of a request.

This mobile cloud architecture is flexible and advantageous

in supporting geo-dispersed big data applications for mobile

users. First, the architecture contains two layers of clouds

that are in different locations. The central cloud is usually

distant from mobile users. Cloudlets are deployed near

mobile users to provide services quickly. For instance, a

mobile user can collect and upload surrounding real-time

information to a nearby cloudlet, and then other mobile

users arriving at the same or neighboring cloudlet are able to

retrieve and down-load recent data fast. Second, cloudlets

reduce the workload of the central cloud so that tasks in the

central cloud can be performed faster. Third, a seamless

connection between mobile devices and cloudlets can be

accomplished by hybrid wireless communication

technologies such as Wi-Fi and cellular 3G/4G. For example,

a mobile device equipped with standard wireless interface

can access to a nearby cloudlet through Wi-Fi AP or cellular

base stations. complex algorithm with complete inputs.

Second, a cloud per-forming the complex algorithm on

multiple inputs should guarantee that the entire operating

procedure of the complex algorithm runs correctly. Due to

some inherent attributes of complex mathematical

operations, partitioning multiple inputs or the algorithm into

several parts for parallel computing usually does not work.

Hence, given all inputs, a complex algorithm that can process

the inputs and create results correctly should be performed

in one machine rather than a cluster of machines.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2903

Figure 2. Extraction module and aggregation
operations in AMF.

4. The Advanced MapReduce Framework

In this article, we propose a novel and flexible framework,

AMF, based on MapReduce to process geo-dispersed big

data. Different from the conventional MapReduce framework

in a clustered environment, AMF focuses on supporting com-

plex mathematical operations and efficiently performing

simple operations on geo-dispersed big data. AMF combines

cooperative processing in a mobile cloud with MapReduce to

efficiently process geo-dispersed big data. In this article, we

mainly consider the case in which partial or complete large

volumes of input data are promptly stored in cloudlets. In

addition, we assume that both cloudlets and the central

cloud have sufficient computation resources to perform

simple and complex operations. The specific method of AMF

is laid out below.

5. Features of Complex Mathematical Operations on

Geo-Dispersed Big Data

Complex mathematical operations on normal data can be

abstracted as a complex algorithm that can process multiple

inputs. We discuss the features of complex mathematical

operations on geo-dispersed big data in the following. First,

finding multiple required inputs is critical for performing

complex mathematical operations efficiently on big data

because many irrelevant data are included in the original

input data. In addition, the original input data that contain

the multiple required inputs are very likely located in differ-

ent clouds due to geo-dispersed big data. Therefore, aggrega-

tion of geo-dispersed multiple inputs needs to be

accomplished in order to obtain the complete inputs. Aggre-

gation in this article means transferring geo-dispersed multi-

ple required inputs to a cloud that can perform the

requested complex algorithm with complete inputs. Second,

a cloud per-forming the complex algorithm on multiple

inputs should guarantee that the entire operating procedure

of the complex algorithm runs correctly. Due to some

inherent attributes of complex mathematical operations,

partitioning multiple inputs or the algorithm into several

parts for parallel computing usually does not work. Hence,

given all inputs, a complex algorithm that can process the

inputs and create results correctly should be performed in

one machine rather than a cluster of machines.

6. Performing Complex Operations in AMF

AMF mainly utilizes distributed extracting to decrease the

size of data that needs to be aggregated and processed. First,

multiple required inputs need to be extracted from large

amounts of original input data so that the size of input data

is reduced. In other words, extracting multiple required

inputs means refining original input data. Due to the reduced

size, the time to transfer the refined input data is less than

that of the original input data. AMF employs distributed and

parallel computing to extract multiple required inputs from

the original input data (geo-dispersed big data). Second, the

multiple inputs are aggregated to guarantee the complete

inputs. Third, the requested complex mathematical

operations are performed in a cloud node.

As shown in Fig. 2, AMF automatically divides the entire

extraction job into several branch jobs by distributed

extracting in each cloud. A branch job consists of extract

operations and the original input data. Before starting the

extract task,

the original input data needs to be partitioned into several

small data blocks of the same size and the size of a data

block is bigger than the size of the minimal input unit. Each

data block is then assigned to an extractor along with an

extraction operation. The extractor applies the extraction

function to obtain some of the required inputs. The

extraction function can be obtained from the specific request

for a big data application. After the entire extraction job is

done, an aggregation of the multiple required inputs needs to

be performed to create the complete inputs Once the

aggregation of the geo-dispersed multiple inputs is done in a

cloud, the corresponding cloud starts to perform complex

mathematical operations on the inputs. As shown in Fig. 3,

the complete inputs cannot be partitioned and are sent to an

analyzer directly. The analyzer applies an analysis function

to obtain the final results. The analysis function is an

algorithm with complex mathematical operations. As shown

in Fig. 4, the proposed framework employs cooperative

processing in mobile cloud and MapReduce to perform

simple operations on geo- dispersed big data. First, the

proposed framework automatically divides a big job into

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2904

several branch jobs according to the distribution of input

data, and then each branch job is performed using

cooperative processing in the mobile cloud. The main idea of

cooperative processing is to leverage a central cloud to

accelerate processing and reduce response time. When a

cloud node starts to perform simple operations on input

data, MapReduce is utilized to perform computing in parallel.

We divide simple operations into two categories. For simple

operations in the first category, the distributed intermediate

results do not need to be aggregated for further processing

such as search operation. For the second category, the

distributed intermediate results need to be aggregated and

processed further for instance sort operation. First, we

demonstrate our method of performing simple operations in

the first category. Considering the fact that the data sizes of

the processed results are normally small, the communication

delay for delivering the final results is negligible compared

to the computing time of the large amount of input data. As

the intermediate results in the first category are part of the

final results, the corresponding communication delay is also

negligible. The proposed cooperative processing makes

cloudlets allocate a number of chunks of input data to the

central cloud. In other words, the total tasks are divided and

processed in parallel by cloudlets and the central cloud.

While a cloudlet is

Figure 3. Analysis module in AMF.

Figure 4. Simple operations in AMF.

transmitting input data to the central cloud, the cloudlet is

also processing the input data except the data allocated to

the central cloud. When both the cloudlets and the central

cloud finish their own processing, the complete final results

are created. Our method calculates the amount of data

chunks allocated to the central cloud in order to reduce the

total response time. We give notation definition in our

scheme as follows. Let a denote the time to execute the

simple operations on a single chunk of data in a cloudlet, b

denote the time to exe-cute the simple operations on a single

chunk of data in the central cloud, and c denote the time to

transfer one single chunk from a cloudlet to the central

cloud. If the total amount of chunks of input data in a

cloudlet is m, and the number of chunks allocated to central

cloud is n, the time to process total time to transmit n chunks

through a WAN and process them using the central cloud is

denoted as T2
p. Thus, for performing simple operations on

input data in a cloudlet, the total response time of

cooperative processing is:

Tc = min(max(T1
p, T2

p)).

In Eq. 1, T1
p = (m – n)a and T2

p = nc + nb. When

the minimal value of max(T1

p, T2
p) can be acquired. When big

data is quickly stored in distributed cloudlets, each cloudlet

independently calculates its own Tc and performs simple

operations by cooperative processing. Once some

intermediate results are generated in a node, they are

directly transmitted to mobile users as a part of the final

results. Second, we demonstrate our method to perform

simple operations in the second category. Like the method in

the first category, the proposed cooperative processing

makes cloudlets allocate a number of chunks of input data to

the central cloud to implement parallel computing. When

both the cloudlets and the central cloud finish their own

processing, the aggregation of intermediate results is

started. Our method calculates the amount of chunks of data

allocated to he central cloud and the corresponding minimal

aggregation time in order to reduce the total response time.

We give notation definition in our scheme as follows. Let G1

denote the data size of intermediate results corresponding to

(m – n) chunks in the cloudlet, and G2 denote the data size of

intermediate results corresponding to n chunks in the

central cloud. Let T1
a denote the time to aggregate

intermediate results and create the final results in the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2905

cloudlet, and T2
a denote the time to aggregate intermediate

results and create the final results in the central cloud. For

other notations, we still use the above definition such as a, b,

and c.

Considering the fact that the data sizes of the final results are

normally small, the communication delay for delivering the

(m – n) chunks using the cloudlet is denoted as T1
p, and the

final results is negligible.

Figure 5. Response time using cooperative processing.

Equation 2 demonstrates our method of calculating the

response time in the case where the complete input data is

only stored in a cloudlet. So the corresponding total

response time of cooperative processing is

Tc = min(max(T1
p, T2

p)) + min(T1
a, T2

a). (2)

In Eq. 2, the minimal value of max(T1
p, T2

p) can be acquired

as in Eq. 1. Let s denote the size of a chunk. Hence,

and T2

a can also be obtained. We use a function f(x) to

describe the relationship between the size of the processed

results and the size of the input data, which is denoted as x.

For different applications, the corresponding f(x) is different.

Machine learning can be used to establish the function f(x).

In this article, we do not specifically discuss how to establish

f(x), but give a method to calculate the sizes of the processed

results of input chunks (m – n) in the cloudlet and input

chunk n in the central cloud (i.e., G1 and G2). Therefore,

through the initial values m, s, f(x), and n, we can calculate

the values of G1 and G2. Then, min(T1
a, T2

a) can be obtained.

Thus, the total response time Tc of cooperative processing

can be calculated when a request with simple operations

happens. At last, we compare the response time

corresponding to only using the cloudlet ma with the Tc, the

processing method corresponding to the lower response

time is selected and per-formed. For distributed input data

stored in selected and per-formed. For distributed input data

stored in several cloudlets, we demonstrate our methods to

perform simple operations in the second category as follows

We consider the case in which the complete input data is

stored in two cloudlets, and the cloudlets have different

input data corresponding to m1 chunks and m2 chunks. Let ai

denote the time to execute the simple operations on a single

chunk of data in cloudlet i, Ti
c the total response time calcu-

lated by Eq. 2 corresponding to cloudlet i, and d denote the

time to transfer one single chunk from one cloudlet to anoth-

er. For other notations, we still use the above definitions

such as b and c. First, each cloudlet independently calculates

its own Ti
c and miai by our above method and determines the

processing method according to the respective response

time. After the first step, intermediate results corresponding

to input data from different cloudlets are created, and they

may be distributed at different nodes due to cooperative

processing. Second, according to the distribution of the

intermediate results, calculate the aggregation time in each

candidate aggregation node i which has partial intermediate

results or is the central cloud. The calculation of total

response time can be done in the central cloud or cloudlets.

Before the calculation, the initial values including the

function f(x) need to be shared among these computing

nodes. Based on various aggregation times and processing

times in different aggregation nodes, the respective total

response time Ti
b can be obtained. Taking the case in Fig. 5 as

an example, where the intermediate results f(m1) and f(m2)

are created in cloudlets 1and 2, respectively, using Eq. 2, the

total response time corresponding to aggregation node

cloudlet 1 is

T1
b = max(T2

c + f(m2)d, T1
c) + (f(m1) + f(m2))a1

For brevity, the total response times, T2
b and T3

b,

corresponding to aggregation node cloudlet 2 and the central

cloud, respectively, are not demonstrated in detail. At last,

the processing method and the aggregation node

corresponding to the response time min(T1
b, T2

b, T3
b) are

performed and select-ed. For other cases where distributed

input data is stored in several cloudlets, the computing

method is the same, and the processing method

corresponding to the lower response time can be

determined when a request with simple operations in the

second category happens. Next, we consider the case in

which both cloudlets and the central cloud have a part of

large volumes of input data. We assume that the complete

input data is stored in two cloudlets and the central cloud,

and the data size is m1, m2, and m3, respectively. First, each

cloudlet independently calculates its own Ti
c and m iai by Eq.

2 and determines the processing method according to

the respective response time. Because the input data m3 is

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2906

pro-cessed by the central cloud, the corresponding

processing time is m3b. Second, according to the distribution

of the intermediate results, calculate the total response time

Ti
b in each candidate aggregation node i that has partial

intermediate results or is the central cloud. At last, the

processing method and the aggregation node co

corresponding to the minimal response time are performed

and selected.

7. Efficient Aggregation Schemes
The aggregation operation is a key step in performing com-

plex mathematical operations because the required multiple

inputs are geo-dispersed. Aggregating large amounts of

multiple inputs may cause long delay for users. If the size of

aggregated multiple inputs is big, the transmission time and

cost can be reduced by an efficient aggregation scheme,

which can improve the performance of AMF. We propose

two types of aggregation scheme to support real-time and

non-real-time geo-dispersed big data applications,

respectively. Since real-time applications require smaller

response time, the corresponding aggregation scheme is

referred to as a dynamic aggregation scheme, which aims to

reduce response time. On the other hand, for non-real-time

applications, our proposed aggregation schemes aim to

finish the requested tasks in a relatively longer time but with

low cost, and the corresponding aggregation scheme is

referred to as planned aggregation.

In the dynamic aggregation scheme, whenever a cloud

node finishes extraction operation, it transfers the extracted

multiple inputs and the corresponding size to other cloud

nodes involved in the entire job. When all required multiple

inputs are aggregated in a cloud node, the cloud node starts

to per-form analysis operation After a cloud node finishes an

analysis operation in the shortest time, it informs other

cloud nodes with a state message including the original user

request and final results. When a cloud node receives a state

message, if it is working on the same user request with the

received state message, the cloud node ends all the

operations caused by the same user request immediately.

Due to the different computing capability of each cloud node,

the respective time to extract required multiple inputs from

a large amount of data is different. The dynamic aggregation

scheme reactively carries the next task when the extraction

of required multiple inputs in a cloud node is finished.

Hence, the minimal aggregation time can be achieved by the

dynamic aggregation scheme.

Figure 6. Simulation results of aggregation schemes: a)

aggregation time; b) communication overhead.

The state message can save some communication and

computation cost when the final results are obtained in the

shortest time. In the planned aggregation scheme, when all

cloud nodes involved in a big job finish their own extraction

operation, they start the planned aggregation scheme. In

other words, after the slowest extraction operation is

finished, the aggregation scheme starts. First, each cloud

node transfers the data size of the extracted multiple inputs

to other cloud nodes. Second, each cloud node finds the

maximal size of extracted multiple inputs among all cloud

nodes, and the cloud node that contains the maximal-size

extracted multiple inputs is selected as the aggregation node.

Third, each cloud node excluding the aggregation node

transfers extracted inputs to the aggregation node. The

planned aggregation scheme per-forms aggregation

operation with minimal communication overhead. For non-

real-time geo-dispersed big data applications, we assume

that the analysis time and extraction time at each cloud node

are acceptable to users.

We use NS-2 for simulation. Input data is distributed in two

cloudlets and a central cloud. For evaluating performance of

our aggregation schemes, we simulate two cases where the

size of total extracted input data is 150 MB and 300 MB,

respectively. In each case, we consider two types of

distribution of extracted input data. For the first distribu-

tion of case 1, cloud1et 1 finishes its extract operations in 15

s, and the extracted input data is 25 MB. Cloud1et 2 finishes

its extract operations in 25 s, and the extracted input data is

50 MB. The central cloud finishes its extract operations in 35

s, and the extracted input data is 75 MB. For the second

distribution of case 1, the time to extract input data is the

same with the first distribution. The extracted input data in

cloudlet 1, cloudlet 2, and the central cloud is 75 MB, 50 MB,

and 25 MB, respectively. In case 2, the time to extract input

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2907

data is the same as in case 1. For the first distribution of case

2, the extracted input data in cloudlet 1,

cloudlet 2, and the central cloud is 50 MB, 100 MB, and 150

MB, respectively. For the second distribution of case 2, the

extracted input data in cloudlet 1, cloudlet 2, and the central

cloud is 150 MB, 100 MB, and 50 MB, respectively. The link

speed between cloudlets is 10 Mb/s corresponding to a LAN.

The upstream link speed (i.e., the link from each cloudlet to

the central cloud) is in the range of [1.3, 3.8] Mb/s, and the

downstream link speed is in the range of [3.0, 4.1] Mb/s. We

calculate aggregation time using the difference between the

time when all extracted input data is aggregated in a node

and the time when a request with complex operations

happens. Figure 6 compares the aggregation time and

communication overhead for three aggregation schemes

(dynamic aggregation, planned aggregation, and random

aggregation). The random aggregation scheme randomly

selects a cloud node as the aggregation node when a request

with complex operations arrives. In the random aggregation

scheme, when a cloud node finishes its extract operations, it

starts to transfer extracted input data to the selected

aggregation node. The horizontal axis of Fig. 6 represents the

size of the total extracted input data. The simulation results

show that the dynamic aggregation scheme achieves the

shortest aggregation time of the three schemes, and the

planned aggregation scheme incurs less communication

overhead than the others.

8. A Geo-Dispersed Big Data Application Based on

the Proposed Framework
In this section, we consider a geo-dispersed big data applica-

tion for analyzing vehicles to support an intelligent

transportation system. The corresponding input data is a

large amount of video surveillance data. The application is

able to analyze traffic and identify a specific vehicle

according to its color and license number. The video

surveillance data is collected by high-definition cameras at

roadsides and junctions. When a request happens, first AMF

extracts the pictures from the original video surveillance

data stored in several cloudlets according to the specified

color of the request. Then AMF extracts the images from the

extracted vehicle pictures according to the specified license

number. At last, the extracted license images and the

corresponding position information are aggregated and

analyzed to identify the corresponding travel trajectory.

9. CONCLUSIONS

In this article, first we talk about the test in using the

portable cloud to prepare geo-scattered enormous

information. At that point we star represent a novel and

adaptable structure in light of MapReduce to bolster

intricate and also straightforward operations on geo-

scattered enormous information. The proposed system, AMF,

utilizes parallel processing in MapReduce to remove

different contributions for complex operations while having

the capacity to suitably total and break down geo-scattered

huge information. For basic operations, AMF adaptively uses

coordinated effort among cloud hubs and MapReduce to

productively handle geo-dispersed enormous information.

For complex operations on geo-scattered enormous

information, AMF utilizes distinctive accumulation plans to

meet different application necessities. For constant

applications, limiting reaction time to portable clients is

accomplished. For non-ongoing applications, AMF makes an

exchange off between reaction time and correspondence cost

REFERENCES

J. Manyika et al., “Big Data: The Next Frontier for Innovation,

Competition, and Productivity,” McKinsey Global Inst., May

2011.

S. Shekhar et al., “Spatial Big-Data Challenges Intersecting

Mobility and Cloud Computing,” in Proc.of 11th ACM Int’l.

Wksp. Data Engineering for Wireless and Mobile Access,

Scottsdale, AZ, 2012, pp. 1–6.

D. Huang et al., “Secure Data Processing Framework for

Mobile Cloud Computing,” Proc. IEEE INFOCOM Wksp. Cloud

Computing, Shanghai, China, 2011, pp. 614–18.

B. Chun et al., “Clone cloud: Elastic Execution between

Mobile Device and Cloud,” Proc. 6th Conf. Comp. Sys., New

York, NY, 2011, pp. 301–14.

R. Yu et al., “Toward Cloud-Based Vehicular Networks with

Efficient Resource Management,” IEEE Network, vol. 27, no.

5, Sept.–Oct. 2013, pp. 48–55.

M. Felemban, S. Basalamah, and A. Ghafoor, “A Distributed

Cloud Architecture for Mobile Multimedia Services,” IEEE

Network, vol. 27, no. 5, Sept.–Oct. 2013, pp. 20–27.

D. Huang, T. Xing, and H. Wu, “Mobile Cloud Computing

Service Mod-els: A User-Centric Approach,” IEEE Network,

vol. 27, no. 5, Sept.–Oct. 2013, pp. 6–11.

J. Dean and S. Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters,” Commun. ACM, vol. 51, no. 1,

Jan. 2008, pp. 107–13.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2908

K. H. Lee et al., “Parallel Data Processing with MapReduce: A

Survey,” ACM SIGMOD Record, vol. 40, no. 4, Dec. 2011, pp.

11–20.

