
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 48

Evaluating HIPI Performance on Image Segmentation Task in Different

Hadoop Configurations

Mosab Shaheen1, Madhukar B. Potdar2, Bhadreshsinh Gohil3

1 Distributed Systems Researcher, GTU PG School, Gujarat, India
2 Project Director, BISAG, Gujarat, India

3 Assistant professor, GTU, Gujarat, India

---***---

Abstract – The available media nowadays is continuously
increasing. Huge amount of images from different sources like
social media, satellite images, etc. can be used for different
applications. To be able to handle this vast amount of data,
parallel and distributed frameworks come into the picture.
Hadoop is a widely used framework for distributed processing
of big data. While Hadoop showed good performance, it suffers
from large number of small size files. Hadoop Image
Processing Interface (HIPI) library solved this problem when
working with images. In this work, we will compare HIPI with
sequence files and basic Hadoop and see the improvement
gained by using it, also we will use different configurations of
Hadoop to see how we can get better results. We will evaluate
the performance on segmentation/clustering tasks over
satellite images.

Key Words: Hadoop, HIPI, Sequence Files, Small Size Files,
Image Segmentation.

1. INTRODUCTION

The increasing number of images with different image
resolutions and from different sources resulted in a big
amount of image data ready to be processed. Traditional
platforms like sequential systems and low scale frameworks
are unable to handle such vast amounts of data. Here it
comes other frameworks that can work under data and
computing intensive tasks.

Apache Hadoop framework allows patch processing of big
data in a distributed and parallel manner and offers scalable
and reliable environment that proves efficiency in many
applications [2]. Hadoop has shown greater performance
when dealing with large size files than large number of small
size files [1] [2] [3] [4] [5] because of issues regarding
storing large amount of metadata about these files and
where they are located, and regarding accessing this
information in Hadoop which will make an overhead on the
Namenode.

For this issue, one framework called HIPI comes into the
picture. HIPI is a library designated for image processing
based on Hadoop framework and offers facilities like
bundling images, culling/filtering, encoding/decoding, etc.
[3]. HIPI has been used in many applications such as
bundling video frames [6] for instrument detection.

We used satellite images as the input for the tasks. Satellite
images usually contain many bands for red, green, blue, near
infra-red, mid infra-red, etc. and sometimes they contain 14
bands. For this purpose, one image standard called GeoTIFF
has been developed, this allows georeferencing information
to be embedded within the TIFF file format. Therefore, to be
able to use the satellite images in HIPI library, we added the
support for this standard.

Segmentation refers to the operation that groups the pixels
in an image depending on the similarity. In case of satellite
images, it usually corresponds to land cover types [7]. For
clustering, K-means is a popular algorithm that can both
cluster the images and do the segmentation on them [7].

We will compare HIPI with Hadoop sequence files and with
basic Hadoop, and will show how HIPI enhanced the
performance and reduced the time for processing. In
addition, we will present the important configurations in
Hadoop that utilize the available resources and give better
results.

The work is organized as follows: first, it presents a
literature review of Hadoop and HIPI. Then, it views the
problem statement and the methodology for implementing
the tasks. Later it shows the important configuration
parameters and the results gained from these configurations,
and last is a conclusion.

2. OVERVIEW

2.1 Hadoop as Efficient Framework for Big Data
Processing

Bajcsy et al. [1] gave a comparison between some parallel
and distributed systems including Hadoop, Terasort, Teragen
and Java Remote Method Invocation (RMI). The experiment
shows that Hadoop does not give good performance for large
number of small size files; on the contrary, when large size
files are used, Hadoop outperforms other frameworks.

Yan et al. [2] built an engine based on Hadoop framework
using OpenCV library for image processing; also they
emphasized that the speed-up is greater for big size files.
Moreover, Li et al. [5] showed that the performance of
Hadoop on large number of small size files is less than on
small number of large size files

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 49

2.2 HIPI Outperforms Other Frameworks
Regarding Small Size Files Issue of Hadoop

To solve the large number of small size files issue,
Sweeney et al. [3] implemented the HIPI library. HIPI
creates an image bundle, which is a collection of images
grouped into one file. HIPI Image Bundle (HIB) consists of
two files the data file and the index file. While Hadoop
Archive (HAR) files can be used as archives of files, they
may give slower performance due to the technique used to
deal with the files inside. Sequence files gives better
performance than the standard Hadoop applications.
However, sequence files must be read serially and they
take considerable time to be generated. On the contrary,
HIPI is not restricted to serial reading and it has similar
speed to sequence files.

Sozyki et al. [4] showed another framework for image
processing called MapReduce Image Processing
framework (MIPr). They made a comparison between
MIPr, HIPI, and OpenIMAG. It was shown that HIPI gave
the best result regarding the time to perform the task.

Li et al. [5] showed that, HAR cannot be changed
whenever created and the name cannot contain spaces; and
sequence files are serially read. Whereas
CombineFileInputFormat is an abstract class and needs
implementation. The authors created HMPI library based on
HIPI and compared it to HAR and standard Hadoop. The
result indicated that HMPI gave the best performance.

3. Problem Statement

Apache Hadoop cannot work effectively on large number of
small files; rather it works fine on large size files. For this
purpose, HIPI library is created; and it shows better
performance than MIPr, OpenIMAG and other Hadoop
structures. However, configuring Hadoop plays the key role
in performance. Weak configuration will lead to slow
performance and will not make the difference in performance
clear. Therefore, we will present how the configuration
affects the performance and how to choose the suitable
configuration.

4. Methodology

First, we have to generate the HIPI Image Bundles (HIBs) and
Sequence Files for different dataset sizes. In case of HIB, we
should combine all the image files into two files (data and
index); and in case of sequence file, it is one file. The second
thing to do is segmentation of images using the data structure
(HIB, Sequence file, or Basic) and K-means algorithm. Fig -1
describes the general steps in this work.

Fig -1: Block diagram of the work

To go in depth of what is happening in the second step, let’s
take the HIB scenario as in Fig -2.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 50

Fig -2: Clustering using HIPI and K-means

In the beginning, HIB is split into FileSplit objects. Each one
holds a start and an end offsets inside HIB data file, with the
help of the index file, and thus the FileSplit can span over
many image files inside HIB determined by these offsets. As a
result, many files now can be processed by one MapTask and
we avoid the overhead of creating too many MapTasks on
the system. The FileReader of HipiImageBundle is
responsible for reading the FileSplit and detecting the
images between the start and the end offsets, and for each
image it will use the developed TIFFImageUtil class which
will take the image data and decode it into the ImageHeader
and TIFFFloatImage objects. The TIFFFloatImage contains
the longitude and latitude information, and original
information of FloatImage like: pixels, width, height, and

number of bands. Each FloatImage/TIFFFloatImage will be
encapsulated inside the FloatImageContainer. After that, the
FloatImageContainer object will be forwarded and processed
by a MapTask; which gets the pixels from the object, apply
the k-means algorithm on them, and generate segments
representing different covers or areas in the image. The
cover types can be: water, soil, streets, forests, building, etc.
The results of Mappers are <key, value> pairs containing the
clustered pixels. They will be forwarded to reducers. The
reducers, in turn, will save the clustered pixels i.e. segments,
in RGB format inside the HDFS. These reducers are useful to
minimize the time and overhead on the Mappers to do the
output operations in HDFS.

5. Configuration

Hadoop configuration plays the key role in performance.
Configuration determines how many Map/Reduce Tasks can
run at the same time (concurrently), amount of memory for
each task and container, number of processing units
dedicated for each container, replication factor, and so forth.
Also we should notice that Hadoop 1 configuration is
different from Hadoop 2 as Yarn becomes the resource
manager and task scheduler. In Yarn there is no concept of
static slot allocation for Maps/Reduces that run in parallel
but rather it depends on the Map/Reduce and container
configuration. Every container can run only one Map/Reduce
Task and multiple containers can run at the same time
executing different tasks. Also if the NodeManager is not
running in a node, the node will not be able to run any task
but it can still function as a data node. Here is a list of the
important configurations in Hadoop:

 mapreduce.map.memory.mb: determines the
maximum physical memory that is needed to run
one map task. If it is exceeded, usually you get
“Container is running beyond physical memory
limits”. This configuration determines the number
of Map Tasks that can run in parallel as Hadoop will
see how much memory available and how much
memory each Map Task needs. Same thing applies
to mapreduce.reduce.memory.mb for Reduce
Tasks.

 mapreduce.map.java.opts: determines the
maximum heap memory assigned to a Map Task. If
it is exceeded, usually you get “java. lang.

OutOfMemoryError: Java heap space”. Same thing
applies to mapreduce.reduce.java.opts for Reduce
Tasks.

 yarn.scheduler.minimum-allocation-mb:

minimum memory for a container.

 yarn.scheduler.maximum-allocation-mb:
maximum memory for a container.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 51

 yarn.nodemanager.resource.memory-mb:
maximum memory available in a node.

 yarn.nodemanager.vmem-pmem-ratio: the ratio

between physical memory and virtual memory. We
talked about the physical memory before; for a Map
Task the virtual memory is calculated by
multiplying mapreduce.map.memory.mb and
yarn.nodemanager.vmem-pmem-ratio. Same thing
applies to Reduce Tasks.

 yarn.nodemanager.vmem-check-enabled:

sometimes the virtual memory exceeds the limit
defined by the ratio mentioned above. This may kill
the container and give a message like “1.1gb of
1.0gb virtual memory used. Killing container.”, this
can happen because of the aggressive allocation of
the memory by the operation system. To stop
checking, if the virtual memory exceeds the ratio,
you can use this option.

 yarn.nodemanager.resource.cpu-vcores:

specifies the number of CPU cores the node has.

We also have to keep in mind the following things:
The number of Maps equals to the number of splits. Splits
are logical units that specifies parts of data. Splits can be
created manually in the InputFormat class or can be
automatically driven from split size = max (min split size,
min (max split size, block size)), so when a file exceeds the
split size it will be split. However, if the files are less than the
split size (usually the block size) then each file is considered
as a split. That’s one reason that small files are not
recommended in Hadoop. Reducers may need double
amount of memory allocated to Maps depending on the
application. Number of containers can be one per CPU core
more than this it may cause an overhead on performance.

After, configuring, running, and completing the tasks; it is
time to see the output of segmenting the satellite images
using K-Means algorithm. Fig -3 shows a sample of a
segmented image in RGB format with 5 clusters.

Fig -3: Sample output of a segmented image

6. Results

We applied clustering on the BISAG Dataset. The dataset is a
collection of GeoTIFF images each one is around 80.9KB in
size. Clustering was done using the previous methodology,
which is compared to clustering with Basic Hadoop (without
using Hadoop structures) and with Hadoop sequence files.
The experiment is applied repeatedly, each time with
different number of images to see the changes in
performance when the data size grows. The work is done by
creating 3 Virtual Machines (VMs) holding Ubuntu OS and
Hadoop; one is Master and others are slaves. For each
execution we ran 6 MapTasks and 6 ReduceTasks. We
allocated 2 CPU Cores to each node, 4.7 GB RAM to each slave
node and 5GB to the master node. The hosting PC is a
workstation that has 8 CPU Cores and 16GB RAM. We were
able to run the 6 Map/Reduce Tasks concurrently because of
the fine-tuned configuration; where we used Yarn for task
scheduling and resource management with 1000MB RAM to
Map/Reduce Task, 800MB RAM to JVM of the task, and
500MB minimum & 3500MB maximum RAM to a container.
Table -1 shows the results with 6 Map Tasks and 6 Reduce
Tasks, visual representation is shown in Chart -1:

Number of

Images#

Without/Basic With

Sequence File

With HIPI

6181#, 0.5

GB

14mins, 56sec 13mins,

54sec

12mins,

28sec

12962#,

1.0 GB

33mins, 17sec 32mins,

38sec

28mins,

27sec

18389#,

1.5 GB

46mins, 21sec 46mins,

24sec

44mins,

39sec

24693#,

2.0 GB

1hrs, 1mins,

14sec

1hrs, 5mins,

18sec

56mins,

41sec

30591#,

2.5 GB

1hrs, 36mins,

44sec

1hrs, 18mins,

30sec

1hrs,15mins,

41sec

37086#,

3.0 GB

1hrs, 56mins,

6sec

1hrs, 43mins,

29sec

1hrs, 5mins,

37sec

Table -1: Results of clustering, using 1 PC and 6
Map/Reduce Tasks

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 52

Chart -1: Visual representation of results, using 1 PC and 6
Map/Reduce Tasks

We can see from Table -1 that HIPI takes the least time to
perform the task followed by Sequence File and last comes
the Basic Hadoop. We can also notice that Sequence File
sometimes get closer to HIPI in performance and other times
get closer to Basic Hadoop, but generally it keeps in between.
Although, clustering is a time consuming task and most of
the time went for clustering, not for accessing the files, but
still we can see clearly that working with HIPI reduced the
overall time to process the small size image files.

It is worth mentioning that Hadoop is a scalable
environment. As a result, when we allocate more resources,
Hadoop will scale up. All what is required is few changes in
the configurations. Therefore, the job can be done faster and
the number of concurrent tasks can be increased easily. For
example, in case we used 2PCs (every PC has 8 CPU Cores
and 16GB RAM, and holds one VM with 6 CPU Cores and 12
GB RAM), then we can run 12 Map/Reduce Tasks
concurrently. The results are shown in Table -2 and the
visual presentation in Chart -2:

Number of

Images#

Without/Basic With

Sequence File

With HIPI

6181#, 0.5

GB

6mins, 24sec 5mins, 10sec 4mins, 49sec

12962#,

1.0 GB

12mins, 49sec 10mins,

41sec

10mins,

45sec

18389#,

1.5 GB

18mins, 10sec 14mins,

20sec

13mins,

19sec

24693#,

2.0 GB

20mins, 21sec 20mins,

47sec

19mins, 4sec

30591#,

2.5 GB

24mins, 12sec 32mins,

23sec

22mins,

27sec

37086#,

3.0 GB

36mins, 6sec 32mins,

13sec

27mins,

30sec

Table -1: Results of clustering, using 2 PCs and 12
Map/Reduce Tasks

Chart -2: Visual representation of results, using 2 PCs and 12
Map/Reduce Tasks

In addition, utilizing the resources is essential key in
performance. If we take the first experiment and run 3
Map/Reduce Tasks instead of 6 we will underload the CPU
cores (because the default value of
mapreduce.map.cpu.vcores and
mapreduce.reduce.cpu.vcores is 1) and will not utilize the
memory properly as the Table -3 and Chart -3 show:

Number of

Images#

Without/Basic With

Sequence File

With HIPI

6181#, 0.5

GB

20mins, 18sec 19mins,

50sec

15mins, 6sec

12962#,

1.0 GB

43mins, 5sec 42mins,

46sec

42mins, 9sec

18389#,

1.5 GB

1hrs, 1mins,

16sec

1hrs, 5mins,

5sec

1hrs, 1mins,

19sec

24693#,

2.0 GB

1hrs, 29mins,

27sec

1hrs, 27mins,

47sec

1hrs, 1mins,

1sec

30591#,

2.5 GB

1hrs, 45mins,

24sec

1hrs, 53mins,

56sec

1hrs, 1mins,

15sec

37086#,

3.0 GB

2hrs, 12mins,

22sec

2hrs, 14mins,

53sec

2hrs, 2sec

Table -3: Results of clustering, using 1 PC and 3
Map/Reduce Tasks

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 53

Chart -3: Visual representation of results, using 1 PC and 3
Map/Reduce Tasks

Finally, tuning the memory of Map/Reduce Tasks &
containers is vital because a small memory may cause failure
and killing of the Map/Reduce Task that is running. For
example, if we want to run 12 Map/Reduce Tasks
concurrently and allocate 500MB RAM to a Map/Reduce
Task, 300MB RAM to JVM of the task, and 256MB minimum
& 3500MB maximum to a container for processing the 3 GB
data in our experiment (37086 images), then some
containers may fail. Eventually, the job may fail completely
or may take more time to be completed. This may happen
due to the lack of memory required to processing the data.

7. CONCLUSIONS

Hadoop is a good framework for processing a big amount of
image data. It offers handling large data sets with scalability,
reliability, distribution & parallelism, and fault tolerance.
Moreover, HIPI offers many facilities like bundling and
supports the MapReduce model of Hadoop. The results
show that HIPI gives better performance than sequence files
and basic Hadoop. In addition, using HIPI library with
Hadoop environment can improve the performance and
make the work more efficient; especially because Hadoop
cannot work with large number of small size files efficiently.
Moreover, we viewed the importance of configurations in
utilizing the resources and how different configurations can
degrade or enhance the performance.

ACKNOWLEDGEMENT

We are thankful to Shri T. P. Singh - Director at BISAG for
supporting this research and to Mr. Miren Karamta - System
Manager, HPC system at BISAG for providing required
infrastructure.

REFERENCES

[1] P. Bajcsy, A. Vandecreme, J. Amelot, P. Nguyen, J.

Chalfoun and M. Brady, "Terabyte-sized image
computations on Hadoop cluster platforms" IEEE

International Conference on Big Data. 2013, Silicon
Valley, CA, 2013, pp. 729-737.

[2] Yuzhong Yan, and Lei Huang, "Large-scale image
processing research cloud" IARIA The Fifth International
Conference on Cloud Computing, GRIDs, and
Virtualization. May 25 - 29, 2014 - Venice, Italy.

[3] Chris Sweeney, Liu Liu, Sean Arietta, and Jason
Lawrence. "HIPI: a Hadoop image processing interface
for image-based mapreduce tasks" University of Virginia
Undergraduate Thesis. 2011.

[4] Andrey Sozykin, and Timofei Epanchintsev. "MIPr – a
framework for distributed image processing using
Hadoop" IEEE 9th International Conference on
Application of Information and Communication
Technologies (AICT), 2015

[5] Jia Li, Kunhui Lin, and Jingjin Wang "Design of the mass
multimedia files storage architecture based on Hadoop"
IEEE 8th International Conference on Computer Science
& Education (ICCSE). April 26-28, 2013. Colombo, Sri
Lanka.

[6] B. C. Sunny, Ramesh R, A. Varghese and V. Vazhayil,
"Map-Reduce based framework for instrument detection
in large-scale surgical videos" IEEE International
Conference on Control Communication & Computing
India (ICCC). 2015, Trivandrum, 2015, pp. 606-611.

[7] I. Chebbi, W. Boulila, and I. R. Farah, "Improvement of
satellite image classification: approach based on
Hadoop/Map Reduce" IEEE 2nd International
Conference on Advanced Technologies for Signal and
Image Processing - ATSIP. 2016 March 21-24, 2016,
Monastir, Tunisia

