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Abstract- Machine Learning has been focusing on the 

various aspects of the technology to automate the day to 

day needs of the human interaction like Siri, Cortana, 

Google Assistant. The Machine Learning is a branch of 

Artificial Intelligence that focuses on learning from the 

existing data to give expected outputs to the users. This 

paper's focuses on the upcoming possibility of the machines 

to learn to code by itself to build blocks of code that a 

regular programmer can do but in a quiet lesser time and 

better optimized. Deep-coder is a technology upcoming 

which is being developed by Microsoft to generate such 

algorithms where machines can generate code provided 

there are specifications provided from the user. 

Key Words: IPS, SMT, DSL, DeepCoder. 

1. INTRODUCTION 
 
Learning is an important parameter for a machine to 
develop intelligence. Deep understanding is what is 
required for any decision that is to be taken. Different 
algorithms could be used for different decisions that 
involves learning depending on the environment. Most of 
the algorithms use the concept of pattern recognition to 
get an optimized decision. This paper focuses on the deep 
learning concept to code by the machines. 
Learning is also considered as a parameter for intelligent 
machines. Deep understanding would help in taking 
decisions in a more optimized form and also help then to 
work in most efficient method. As seeing is intelligence, so 
learning is also becoming a key to the study of biological 
and artificial vision. Instead of building heavy machines 
with explicit programming now different algorithms are 
being introduced which will help the machine to 
understand the virtual environment and based on their 
understanding the machine will take particular decision. 
This could eventually decrease the number of 
programming concepts and also machine could become 
independent and take decisions on their own. 
Different algorithms are introduced for different types of 
machines and the decisions taken by them. Designing the 
algorithm and using it in most appropriate way is the real 
challenge for the developers and scientists. Pattern 
recognizing   a concept in machine learning to make 
optimized decisions. As a consequence of this new interest 
in learning we are experiencing a new era in statistical and 

functional approximation techniques and their 
applications to domain such as computer visions. 
 

2. Related Work 
 
Matej Balog from the Cambridge University and Alexander 
L. Gaunt along with his associates[2] at the Microsoft 
Research developed a first line of attack for solving 
programming competition-style problems from input-
output examples using deep learning. Their approach is to 
train a neural network to predict properties of the 
program that generated the outputs from the inputs. They 
used the neural network’s predictions to augment search 
techniques from the programming languages community, 
including enumeration search and an SMT based solver. 
Factually, their  approach leads to an order of magnitude 
speedup over the strong non-augmented baselines and a 
Recurrent Neural Network approach, and that we are able 
to solve problems of difficulty comparable to the simplest 
problems on programming competition websites. 
 
In this work, they proposed two main ideas: 

1. learn to induce programs; that is, use a corpus of 
program induction problems to learn strategies 
that generalize across problems,[3] and 

2. integrate neural network architectures with 
search-based techniques rather than replace 
them.[3] 

In more detail, their approach contrasts to existing work 
on differentiated interpreters. In differential interpreters, 
the idea is to define a differentiated mapping from source 
code and inputs to outputs. After observing inputs and 
outputs, gradient descent can be used to search for a 
program that matches the input-output examples.  
It can be argued that machine learning can provide 
significant value towards solving Inductive Program 
Synthesis (IPS) by re-casting the problem as a big data 
problem. It shows that training a neural network on a 
large number of IPS generated problems could predict 
cues from the problem description can help a search-
based technique. In this work, they focused on predicting 
an order on the program space and show how to use it to 
guide search-based techniques that are common in the 
programming languages community.[3] 
 
This approach has three desirable properties:  

first, we transform a difficult search problem into a 
supervised learning problem;   
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second, we soften the effect of failures of the neural 
network by searching over program space rather than 
relying on a single prediction;  
third, the neural network’s predictions are used to guide 
existing program synthesis systems, allowing them to use 
and improve on the best solvers from the programming 
languages community. 
It represents magnitude of improvements over some 
optimized standard search techniques and a Recurrent 
Neural Network-based approach to the problems. 
In summary, it defines and instantiate a framework for 
using deep learning for program synthesis problems like 
ones appearing on programming competition websites.  
 
Their base contributions are: 

1. defining a programming language that is 
expressive enough to include real-world 
programming problems while being high-level 
enough to be predictable from input-output 
examples; 

2. models to map sets of input-output examples to 
program properties; and 

3. experiments that show an order of magnitude 
speedup over standard program synthesis 
techniques, which makes this approach feasible 
for solving problems of similar difficulty as the 
simplest problems that appear on programming 
competition websites. 

 

 

Fig1: Machine Learning Model 
 

About Deep-Coder: 
 
Deep coder is a machine learning system that can write its 
own code. It does this by using a Technique called 
program synthesis. It has the ability to create new 
programs by taking the line of code from the existing 
programs from other software. This program synthesis 
can determine which line of code in particular can be 
useful to get the desired output for any particular user. 

This approach is to train a neural network to predict 
properties of a program that generates output from the 
inputs. Neural network predictions can be used to 
augment search techniques from programming language 
community, as tested by the team led by Alexander Gaunt 
from Microsoft Research and Matej Balog from Cambridge. 
[3] 
The system, called Deep-Coder, basically searches a corpus 
of code to build a project that works to spec. This system 
gets smarter as it keeps practicing, figuring out which  
code snippets work best together and when to use a 
certain snippet in place of another. Hence it learns the 
system to get faster as it builds more programs. 
Deep-Coder successfully plowed through the basic, input-
output style challenges usually set by programming 
competitions. It was able to search through multi-lines of 
code more scrutinized and widely than a human coder 
could do, grouping together code in a manner humans 
might not think of and in a more quicker way. Since Deep-
Coder is essentially a deep learning algorithm, every time 
it’s given a new problem, it gets better at combining lines 
from source codes. Ultimately, this algorithmic technique 
can make programming accessible to non-coders, allowing 
anyone and everyone to easily build simple programs. 
Researcher Marc Brockschmidt, one of Deep-Coder’s 
creators from Microsoft Research in Cambridge, UK, 
believes that their approach would make it possible for 
non-coders to just describe a program and leave the 
system to build it. This could innovate the programming 
drastically, in no one way that programmers could have 
thought of.[2] 
Deep-Coder’s current version only allows it to handle 
programming challenges with around five lines of 
code. “The potential for automation that this kind of 
technology offers could really signify an enormous 
[reduction] in the amount of effort it takes to develop 
code,”  
Defining the machine learning is a task that is vitally 
important to understand scope of the problem and the 
limits involved in any potential solution. 
 
In the standard programming term setting, we have two 
pieces of information: 

1. A textual description of the problem 
2. One or more example input / output pairs 

 
A simple example is provided below. 
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The goal is to produce a working program that is  
(a) consistent with all provided input / output examples 
and  
(b) consistent with the task as described.  
Notice that solving (a) does not imply (b).[2] 
The above is called Inductive Program Synthesis 
(IPS),where a given input-output example, produces a 
program that has behavior consistent with the examples 
and the defined task.  
 

3) What does Deep-coder do? 
 

3.1 The program space with our infinite monkeys 
 
In the experiments in the paper, each problem is given five 
example input / output pairs. Deep-coder defines a 
domain specific language (DSL) that, when composed 
together, can solve the specified problems. This DSL 
contains 34 different first order and higher order 
functions and allows all integers from -255 to 255. 
Essentially, you have a set keyboard of options that you 
can use to piece together a solution.[1] 
 

First-order functions: HEAD, LAST, TAKE, DROP, ACCESS, 
MIN, MAX, REVERSE, SORT, SUM 
Higher-order functions: MAP, FILTER, COUNT, ZIPWITH, 
SCANL1. 
Higher-order MAP allows: (+1), (-1), (*2), (/2), (*(-1)), 
(**2), (*3), (/3), (*4), (/4) 
Higher-order FILTER and COUNT allows: (>0), (<0), 
(%2==0), (%2==1) 
Higher-order ZIPWITH and SCANL1 allows: (+), (-), (*), 
MIN, MAX 

 
Note that this DSL does not contain any explicit control 
flow such as for loops, while loops, or branching. 
This results in an enormous potential set of programs- one 
of which is guaranteed to hold the solution. This is 
referred to as the program space and is equivalent to 
throwing the infinite monkey theorem at the problem 
which states if there are n number of monkeys placed in 
front of specialized keyboards having buttons labeled with 
functions (SORT, TAKE, SUM), variables (k, b, c), and so on 
- one of the monkeys would eventually produce the 
correct program. Obviously monkeys are slow, 
temperamental, and require bananas, so we'd hope there's 
a better option. One best options is depth first search 
(DFS), where one weights the search towards programs 
similar in composition to previous working programs 
we've seen in training and keep testing the program 
against the input / output examples to see if it works. This 
is one of the baselines that Deep-coder competes against. 
Given infinite time, DFS would solve our proposed 
problems using the DSL specified above.[1] 
 

3.2 Neural networks are better than infinite 
monkeys 
 
Deep-coder gives the output after getting the input pairs 
and predicts the presence or absence of individual 
functions from the DSL. 
Note that Deep-coder doesn't even read the problem 
description and yet to help decide which functions are 
most likely! 

Below, Figure from the paper, is an example that predicts 
the probability of each DSL function appearing in the 
source code. The neural network in this case is 
particularly interested in trying to 
use MAP,(*4), SORT, FILTER, and REVERSE to solve the 
problem. If the neural network's prediction is accurate, it 
may be possibly to find the relevant program quickly and 
easily without exhaustively searching the program space. 
[1] 

 

Important to note, the maximal length of the 

programs is length 5, as in the example below. 
 
This is still far away from being useful in real world tasks 
though it does represent a strong speed improvement 
over previous methods that could exhibit these 
capabilities. 

https://en.wikipedia.org/wiki/Infinite_monkey_theorem
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The authors of "DeepCoder: Learning to Write Programs" 
employ deep learning and artificial neural 
networks(ANNs). First, a domain-specific programming 
language is chosen. Then, an ANN is trained on a variety of 
example programs. This ANN is then used to guide the 
search in the space of possible programs when trying to 
solve a new programming task. Basically, this search can 
exhaustively explore a certain subspace of the space of all 
possible programs. The subspace could be "all programs of 
at most 5 instructions." The search could then be a depth-
first search (DFS) up to depth 5. Whenever the DFS needs 
to choose the next instruction to add to its current 
program, it could pick the one the ANN deems to most 
likely to be the right choice. Since it would still explore the 
subspace exhaustively and the ANN just provides the 
order of the exploration, it would still find the right 
program (if one exists), even if the ANN would be faulty. 
By using this concept, the authors achieve a considerable 
speedup on existing technologies. 

Write Programs.[2]  

Program  

s <- [int] 

b <- REVERSE s 

c <- ZIPWITH (-) b s 

d <- FILTER (>0) c 

e <- SUM d 

Input Example 

Input: [1 2 4 5 7] 

Output: 9 

Description 

Vivian loves rearranging things. Most of all, when she sees 
a row of heaps, she wants to make sure that each heap has 
more items than the one to its left. She is also obsessed 
with efficiency, so always moves the least possible 
number of items. Her dad really dislikes if she changes the 
size of heaps, so she only moves single items between 
them, making sure that the set of sizes of the heaps is the 
same as at the start; they are only in a different order. 
When you come in, you see heaps of sizes (of course, sizes 
strictly monotonically increasing) s[0], s[1], … s[n]. What 
is the maximal number of items that Vivian could have 
moved? 

 
What did people claim Deep-coder could do? 
Like a game of telephone / Chinese whispers, errors seem 
to accumulate in each retelling of scientific research. The 
various allegations like "Deep-coder copy pastes from 
Stack Overflow" were a major widespread rumors that 
followed. [1] 
Simple statements meant to improve reader 
comprehension take on a life of their own.  a journalist 
started describing it as "piecing together lines of code 
taken from existing software" Instead they could describe 
that the program was able to use 34 different first order 
and higher order functions from a domain specific 
language. A journalist also described it as "using machine 
learning to scour databases of source code" Instead of 
stating the process of training the algorithm from a 
specific set of problem descriptions and input / output 
pairs. 
Neither of these are bad- especially within the original 
article context. A full explanation of the paper is out of 
scope for such an article. These minor simplifications are 
used to allow a broader audience of readers to follow the 
story. This is good- more people should have the 
opportunity to understand these advances. Many articles 
are even reasonable in their claims, stating that Deep-
coder for now only works with programs of length five or 
less and specifically only over an extreme subset of 
programming competition problems.  
The issue comes as the story is relayed, poorly, over and 
over again. The incorrect but helpful narration "piecing 
together lines of code" suddenly becomes copy and paste. 
This helpful  "scouring a database" becomes "stealing from 
other software" which then jumps to "stealing from Stack-
Overflow". Deep-coder even becomes an active competitor 
in online programming competitions and capable of 
already assisting programmers. Reality falls away awfully 
quickly...[1] 
 

1. Microsoft's AI writes code by looting other 
software 

2. Deep-coder takes lines of code from existing 
software 

3. Microsoft's new AI can code by stealing bits of 
code from other software 

4. Microsoft Deep-coder AI Produces Its Own Code 
By Ripping Off Existing Software 

5. Microsoft’s AI ‘Deep-coder’ learns coding by 
stealing from others 

6. Now, here is Deep-coder, an AI trained to use 
pieces of code from existing software and write a 
code of its own. 

7. Deep-coder AI Writes Programs Using Existing 
Code Snippets 

8. Deep-coder builds programs using code it finds 
lying around the system works by taking lines of 
code from existing programs and combining them. 

An example taken from the paper DeepCoder: Learning to 

3.3 Algorithm Synthesis with DeepCoder 4. Misconception about Deep-coder Steal code: 

http://en.wikipedia.org/wiki/Deep_learning
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Artificial_neural_network
https://arxiv.org/abs/1611.01989
https://arxiv.org/abs/1611.01989
https://arxiv.org/abs/1611.01989
https://arxiv.org/abs/1611.01989
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Thus, the hybrid code was born-Called Deep-coder, the 
software can take requirements by the developer, search 
through a massive database of code snippets and deliver 
working code in seconds. They only have to describe their 
program idea and wait for the system to create it. 
It’s been used to complete programming competitions and 
could be pointed at a larger set of data to build more 
complex products. The system can search more quickly 
and more completely than any human coder to create a 
new application once it knows what the requirements are. 
Deep-coder successfully plowed through the basic, input-
output style challenges usually set by programming 
competitions. In the paper, the researchers explain that 
Deep-coder relies on big data analysis and machine 
learning techniques. 
To remind you why the above is stunningly incorrect: 

1. Deep-coder did not (and cannot) at any point take 
code from another piece of software. 

2. Deep-coder can't read or use any of the textual 
descriptions that might exist for a given problem - 
so anywhere "reading a problem description" is 
basically incorrect. 

3. Solar Lezama said. No need for programmers to 
start updating their resumes, though, as this tech 
wouldn’t replace humans. Instead, the system 
could handle more tedious parts of programming, 
while human coders could focus on more 
sophisticated work. 

 

5. FUTURE VISION 
 
Over the last decade, program synthesis performed a great 
leap forward, exempli1ed in learning complex programs 
from loose speci1cations in mass-market applications. I 
believe that its ability to perform logical reasoning and 
leverage domain-speci1c insight will provide a new level 
of capabilities to modern AI technologies. Machine 
learning has long realized the importance of proper 
representations to effective learning. Nowadays, adopting 
programs as the underlying representation of AI promises 
to resolve the omnipresent demand to make AI artifacts 
debuggable and interpretable. 
 
While neural models by themselves are difficult to 
interpret, program synthesis and DSL''s can help in this 
regard. There are multiple ways to apply them to the deep 
learning artifacts: 
(a) use features/subroutines that were learned by 
techniques from the previous paragraph as a high-level 
interpretation; 
(b)synthesize an “interpretation” program from a 
supplementary DSL that most closely approximates the 
model as a black-box function; 
(c) combine both approaches by inducing a supplementary 
DSL from the learned subroutines. 

Any of these approaches makes ML-based AI more 
transparent, which helps to apply it to new domains on an 
industrial scale. 
 

6. CONCLUSIONS 
 
Machine learning has a lot of “folk wisdom” and scope that 
can be hard to come by, but is crucial for success. This 
article summarized some of the most salient items. This 
paper emphasizes on the possibility of the wide domain of 
machine learning to grow its roots for the programmers to 
help and code through artificial intelligence. 
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