
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 04 Issue: 06 | June-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 963

DEEPCODER TO SELF-CODE WITH MACHINE LEARNING

Sumit Thappar1, Ameya Parkar2

1 Student, Masters of Computer Application Department, VESIT, Maharashtra, India
2 Asst. Professor, Masters of Computer Application Department, VESIT, Maharashtra, India

---***---
Abstract- Machine Learning has been focusing on the

various aspects of the technology to automate the day to

day needs of the human interaction like Siri, Cortana,

Google Assistant. The Machine Learning is a branch of

Artificial Intelligence that focuses on learning from the

existing data to give expected outputs to the users. This

paper's focuses on the upcoming possibility of the machines

to learn to code by itself to build blocks of code that a

regular programmer can do but in a quiet lesser time and

better optimized. Deep-coder is a technology upcoming

which is being developed by Microsoft to generate such

algorithms where machines can generate code provided

there are specifications provided from the user.

Key Words: IPS, SMT, DSL, DeepCoder.

1. INTRODUCTION

Learning is an important parameter for a machine to
develop intelligence. Deep understanding is what is
required for any decision that is to be taken. Different
algorithms could be used for different decisions that
involves learning depending on the environment. Most of
the algorithms use the concept of pattern recognition to
get an optimized decision. This paper focuses on the deep
learning concept to code by the machines.
Learning is also considered as a parameter for intelligent
machines. Deep understanding would help in taking
decisions in a more optimized form and also help then to
work in most efficient method. As seeing is intelligence, so
learning is also becoming a key to the study of biological
and artificial vision. Instead of building heavy machines
with explicit programming now different algorithms are
being introduced which will help the machine to
understand the virtual environment and based on their
understanding the machine will take particular decision.
This could eventually decrease the number of
programming concepts and also machine could become
independent and take decisions on their own.
Different algorithms are introduced for different types of
machines and the decisions taken by them. Designing the
algorithm and using it in most appropriate way is the real
challenge for the developers and scientists. Pattern
recognizing a concept in machine learning to make
optimized decisions. As a consequence of this new interest
in learning we are experiencing a new era in statistical and

functional approximation techniques and their
applications to domain such as computer visions.

2. Related Work

Matej Balog from the Cambridge University and Alexander
L. Gaunt along with his associates[2] at the Microsoft
Research developed a first line of attack for solving
programming competition-style problems from input-
output examples using deep learning. Their approach is to
train a neural network to predict properties of the
program that generated the outputs from the inputs. They
used the neural network’s predictions to augment search
techniques from the programming languages community,
including enumeration search and an SMT based solver.
Factually, their approach leads to an order of magnitude
speedup over the strong non-augmented baselines and a
Recurrent Neural Network approach, and that we are able
to solve problems of difficulty comparable to the simplest
problems on programming competition websites.

In this work, they proposed two main ideas:

1. learn to induce programs; that is, use a corpus of
program induction problems to learn strategies
that generalize across problems,[3] and

2. integrate neural network architectures with
search-based techniques rather than replace
them.[3]

In more detail, their approach contrasts to existing work
on differentiated interpreters. In differential interpreters,
the idea is to define a differentiated mapping from source
code and inputs to outputs. After observing inputs and
outputs, gradient descent can be used to search for a
program that matches the input-output examples.
It can be argued that machine learning can provide
significant value towards solving Inductive Program
Synthesis (IPS) by re-casting the problem as a big data
problem. It shows that training a neural network on a
large number of IPS generated problems could predict
cues from the problem description can help a search-
based technique. In this work, they focused on predicting
an order on the program space and show how to use it to
guide search-based techniques that are common in the
programming languages community.[3]

This approach has three desirable properties:

first, we transform a difficult search problem into a
supervised learning problem;

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 04 Issue: 06 | June-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 964

second, we soften the effect of failures of the neural
network by searching over program space rather than
relying on a single prediction;
third, the neural network’s predictions are used to guide
existing program synthesis systems, allowing them to use
and improve on the best solvers from the programming
languages community.
It represents magnitude of improvements over some
optimized standard search techniques and a Recurrent
Neural Network-based approach to the problems.
In summary, it defines and instantiate a framework for
using deep learning for program synthesis problems like
ones appearing on programming competition websites.

Their base contributions are:

1. defining a programming language that is
expressive enough to include real-world
programming problems while being high-level
enough to be predictable from input-output
examples;

2. models to map sets of input-output examples to
program properties; and

3. experiments that show an order of magnitude
speedup over standard program synthesis
techniques, which makes this approach feasible
for solving problems of similar difficulty as the
simplest problems that appear on programming
competition websites.

Fig1: Machine Learning Model

About Deep-Coder:

Deep coder is a machine learning system that can write its
own code. It does this by using a Technique called
program synthesis. It has the ability to create new
programs by taking the line of code from the existing
programs from other software. This program synthesis
can determine which line of code in particular can be
useful to get the desired output for any particular user.

This approach is to train a neural network to predict
properties of a program that generates output from the
inputs. Neural network predictions can be used to
augment search techniques from programming language
community, as tested by the team led by Alexander Gaunt
from Microsoft Research and Matej Balog from Cambridge.
[3]
The system, called Deep-Coder, basically searches a corpus
of code to build a project that works to spec. This system
gets smarter as it keeps practicing, figuring out which
code snippets work best together and when to use a
certain snippet in place of another. Hence it learns the
system to get faster as it builds more programs.
Deep-Coder successfully plowed through the basic, input-
output style challenges usually set by programming
competitions. It was able to search through multi-lines of
code more scrutinized and widely than a human coder
could do, grouping together code in a manner humans
might not think of and in a more quicker way. Since Deep-
Coder is essentially a deep learning algorithm, every time
it’s given a new problem, it gets better at combining lines
from source codes. Ultimately, this algorithmic technique
can make programming accessible to non-coders, allowing
anyone and everyone to easily build simple programs.
Researcher Marc Brockschmidt, one of Deep-Coder’s
creators from Microsoft Research in Cambridge, UK,
believes that their approach would make it possible for
non-coders to just describe a program and leave the
system to build it. This could innovate the programming
drastically, in no one way that programmers could have
thought of.[2]
Deep-Coder’s current version only allows it to handle
programming challenges with around five lines of
code. “The potential for automation that this kind of
technology offers could really signify an enormous
[reduction] in the amount of effort it takes to develop
code,”
Defining the machine learning is a task that is vitally
important to understand scope of the problem and the
limits involved in any potential solution.

In the standard programming term setting, we have two
pieces of information:

1. A textual description of the problem
2. One or more example input / output pairs

A simple example is provided below.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 04 Issue: 06 | June-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 965

The goal is to produce a working program that is
(a) consistent with all provided input / output examples
and
(b) consistent with the task as described.
Notice that solving (a) does not imply (b).[2]
The above is called Inductive Program Synthesis
(IPS),where a given input-output example, produces a
program that has behavior consistent with the examples
and the defined task.

3) What does Deep-coder do?

3.1 The program space with our infinite monkeys

In the experiments in the paper, each problem is given five
example input / output pairs. Deep-coder defines a
domain specific language (DSL) that, when composed
together, can solve the specified problems. This DSL
contains 34 different first order and higher order
functions and allows all integers from -255 to 255.
Essentially, you have a set keyboard of options that you
can use to piece together a solution.[1]

First-order functions: HEAD, LAST, TAKE, DROP, ACCESS,
MIN, MAX, REVERSE, SORT, SUM
Higher-order functions: MAP, FILTER, COUNT, ZIPWITH,
SCANL1.
Higher-order MAP allows: (+1), (-1), (*2), (/2), (*(-1)),
(**2), (*3), (/3), (*4), (/4)
Higher-order FILTER and COUNT allows: (>0), (<0),
(%2==0), (%2==1)
Higher-order ZIPWITH and SCANL1 allows: (+), (-), (*),
MIN, MAX

Note that this DSL does not contain any explicit control
flow such as for loops, while loops, or branching.
This results in an enormous potential set of programs- one
of which is guaranteed to hold the solution. This is
referred to as the program space and is equivalent to
throwing the infinite monkey theorem at the problem
which states if there are n number of monkeys placed in
front of specialized keyboards having buttons labeled with
functions (SORT, TAKE, SUM), variables (k, b, c), and so on
- one of the monkeys would eventually produce the
correct program. Obviously monkeys are slow,
temperamental, and require bananas, so we'd hope there's
a better option. One best options is depth first search
(DFS), where one weights the search towards programs
similar in composition to previous working programs
we've seen in training and keep testing the program
against the input / output examples to see if it works. This
is one of the baselines that Deep-coder competes against.
Given infinite time, DFS would solve our proposed
problems using the DSL specified above.[1]

3.2 Neural networks are better than infinite
monkeys

Deep-coder gives the output after getting the input pairs
and predicts the presence or absence of individual
functions from the DSL.
Note that Deep-coder doesn't even read the problem
description and yet to help decide which functions are
most likely!

Below, Figure from the paper, is an example that predicts
the probability of each DSL function appearing in the
source code. The neural network in this case is
particularly interested in trying to
use MAP,(*4), SORT, FILTER, and REVERSE to solve the
problem. If the neural network's prediction is accurate, it
may be possibly to find the relevant program quickly and
easily without exhaustively searching the program space.
[1]

Important to note, the maximal length of the

programs is length 5, as in the example below.

This is still far away from being useful in real world tasks
though it does represent a strong speed improvement
over previous methods that could exhibit these
capabilities.

https://en.wikipedia.org/wiki/Infinite_monkey_theorem

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 04 Issue: 06 | June-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 966

The authors of "DeepCoder: Learning to Write Programs"
employ deep learning and artificial neural
networks(ANNs). First, a domain-specific programming
language is chosen. Then, an ANN is trained on a variety of
example programs. This ANN is then used to guide the
search in the space of possible programs when trying to
solve a new programming task. Basically, this search can
exhaustively explore a certain subspace of the space of all
possible programs. The subspace could be "all programs of
at most 5 instructions." The search could then be a depth-
first search (DFS) up to depth 5. Whenever the DFS needs
to choose the next instruction to add to its current
program, it could pick the one the ANN deems to most
likely to be the right choice. Since it would still explore the
subspace exhaustively and the ANN just provides the
order of the exploration, it would still find the right
program (if one exists), even if the ANN would be faulty.
By using this concept, the authors achieve a considerable
speedup on existing technologies.

Write Programs.[2]

Program

s <- [int]

b <- REVERSE s

c <- ZIPWITH (-) b s

d <- FILTER (>0) c

e <- SUM d

Input Example

Input: [1 2 4 5 7]

Output: 9

Description

Vivian loves rearranging things. Most of all, when she sees
a row of heaps, she wants to make sure that each heap has
more items than the one to its left. She is also obsessed
with efficiency, so always moves the least possible
number of items. Her dad really dislikes if she changes the
size of heaps, so she only moves single items between
them, making sure that the set of sizes of the heaps is the
same as at the start; they are only in a different order.
When you come in, you see heaps of sizes (of course, sizes
strictly monotonically increasing) s[0], s[1], … s[n]. What
is the maximal number of items that Vivian could have
moved?

What did people claim Deep-coder could do?
Like a game of telephone / Chinese whispers, errors seem
to accumulate in each retelling of scientific research. The
various allegations like "Deep-coder copy pastes from
Stack Overflow" were a major widespread rumors that
followed. [1]
Simple statements meant to improve reader
comprehension take on a life of their own. a journalist
started describing it as "piecing together lines of code
taken from existing software" Instead they could describe
that the program was able to use 34 different first order
and higher order functions from a domain specific
language. A journalist also described it as "using machine
learning to scour databases of source code" Instead of
stating the process of training the algorithm from a
specific set of problem descriptions and input / output
pairs.
Neither of these are bad- especially within the original
article context. A full explanation of the paper is out of
scope for such an article. These minor simplifications are
used to allow a broader audience of readers to follow the
story. This is good- more people should have the
opportunity to understand these advances. Many articles
are even reasonable in their claims, stating that Deep-
coder for now only works with programs of length five or
less and specifically only over an extreme subset of
programming competition problems.
The issue comes as the story is relayed, poorly, over and
over again. The incorrect but helpful narration "piecing
together lines of code" suddenly becomes copy and paste.
This helpful "scouring a database" becomes "stealing from
other software" which then jumps to "stealing from Stack-
Overflow". Deep-coder even becomes an active competitor
in online programming competitions and capable of
already assisting programmers. Reality falls away awfully
quickly...[1]

1. Microsoft's AI writes code by looting other
software

2. Deep-coder takes lines of code from existing
software

3. Microsoft's new AI can code by stealing bits of
code from other software

4. Microsoft Deep-coder AI Produces Its Own Code
By Ripping Off Existing Software

5. Microsoft’s AI ‘Deep-coder’ learns coding by
stealing from others

6. Now, here is Deep-coder, an AI trained to use
pieces of code from existing software and write a
code of its own.

7. Deep-coder AI Writes Programs Using Existing
Code Snippets

8. Deep-coder builds programs using code it finds
lying around the system works by taking lines of
code from existing programs and combining them.

An example taken from the paper DeepCoder: Learning to

3.3 Algorithm Synthesis with DeepCoder 4. Misconception about Deep-coder Steal code:

http://en.wikipedia.org/wiki/Deep_learning
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Artificial_neural_network
https://arxiv.org/abs/1611.01989
https://arxiv.org/abs/1611.01989
https://arxiv.org/abs/1611.01989
https://arxiv.org/abs/1611.01989

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 04 Issue: 06 | June-2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 967

Thus, the hybrid code was born-Called Deep-coder, the
software can take requirements by the developer, search
through a massive database of code snippets and deliver
working code in seconds. They only have to describe their
program idea and wait for the system to create it.
It’s been used to complete programming competitions and
could be pointed at a larger set of data to build more
complex products. The system can search more quickly
and more completely than any human coder to create a
new application once it knows what the requirements are.
Deep-coder successfully plowed through the basic, input-
output style challenges usually set by programming
competitions. In the paper, the researchers explain that
Deep-coder relies on big data analysis and machine
learning techniques.
To remind you why the above is stunningly incorrect:

1. Deep-coder did not (and cannot) at any point take
code from another piece of software.

2. Deep-coder can't read or use any of the textual
descriptions that might exist for a given problem -
so anywhere "reading a problem description" is
basically incorrect.

3. Solar Lezama said. No need for programmers to
start updating their resumes, though, as this tech
wouldn’t replace humans. Instead, the system
could handle more tedious parts of programming,
while human coders could focus on more
sophisticated work.

5. FUTURE VISION

Over the last decade, program synthesis performed a great
leap forward, exempli1ed in learning complex programs
from loose speci1cations in mass-market applications. I
believe that its ability to perform logical reasoning and
leverage domain-speci1c insight will provide a new level
of capabilities to modern AI technologies. Machine
learning has long realized the importance of proper
representations to effective learning. Nowadays, adopting
programs as the underlying representation of AI promises
to resolve the omnipresent demand to make AI artifacts
debuggable and interpretable.

While neural models by themselves are difficult to
interpret, program synthesis and DSL''s can help in this
regard. There are multiple ways to apply them to the deep
learning artifacts:
(a) use features/subroutines that were learned by
techniques from the previous paragraph as a high-level
interpretation;
(b)synthesize an “interpretation” program from a
supplementary DSL that most closely approximates the
model as a black-box function;
(c) combine both approaches by inducing a supplementary
DSL from the learned subroutines.

Any of these approaches makes ML-based AI more
transparent, which helps to apply it to new domains on an
industrial scale.

6. CONCLUSIONS

Machine learning has a lot of “folk wisdom” and scope that
can be hard to come by, but is crucial for success. This
article summarized some of the most salient items. This
paper emphasizes on the possibility of the wide domain of
machine learning to grow its roots for the programmers to
help and code through artificial intelligence.

REFERENCES

[1] URL:https://smerity.com/articles/2017/deepcoder_
and_ai_hype.html

[2] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt,
Sebastian Nowozin, Daniel Tarlow ,Submitted to ICLR
2017 URL: https://arxiv.org/abs/1611.01989

[3] URL:https://techxplore.com/news/2017-02-
microsoft-university-cambridge-deepcoder-
code.html

[4] Alexander L. Gaunt, Marc Brockschmidt, Rishabh
Singh, Nate Kushman, Pushmeet Kohli, Jonathan
Taylor, and Daniel Tarlow. Terpret: A probabilistic
programming language for program induction.CoRR,
abs/1608.04428, 2016. URL
http://arxiv.org/abs/1608.04428.

[5] Alex Graves, GregWayne, and Ivo Danihelka. Neural
Turing machines. CoRR, abs/1410.5401, 2014.URL
http://arxiv.org/abs/1410.5401.

https://techxplore.com/news/2017-02-microsoft-university-cambridge-deepcoder-code.html
https://techxplore.com/news/2017-02-microsoft-university-cambridge-deepcoder-code.html
https://techxplore.com/news/2017-02-microsoft-university-cambridge-deepcoder-code.html

