

STUDY ON BEHAVIOR OF TUBULAR DIAGRID STRUCTURES DURING SEISMIC EXCITATION

Pooja Udaykumar¹, Supreeth. S², Pradeep C.R³

¹M.Tech. (Structural Engineering), SJBIT, Department of Civil Engineering, Karnataka, India ²Assistant Professor, SJBIT, Department Of Civil Engineering, Karnataka, India ³Assistant Professor, BIT, Department Of Civil Engineering, Karnataka, India _____***______

Abstract - Diagrids structures have evolved as an effective and innovative form used in the present decades. Diagrid buildings have grids employed in a diagonal manner and have gained popularity in tall structures as they have higher structural efficiency & decorative attributes. Very few research works have been performed examining on the behavior of structures and its performance under dynamic loads.

In this study, a G+50 storey structure with tubular diagrid configuration is used with modelling done in ETABS and a non-linear type of investigation is performed on the different models having varied angles along the height of the structure. Also the building is situated in zone III and medium soil is used. From the analysis, various diagrid angles used in the structure are assessed for different parameters of earthquake and results are studied.

Key Words: Varied angles of Diagrids, Tall structures, **Displacements etc.**

1. INTRODUCTION

It is very much important to make the developing design strategies in the present days for the tall buildings systems to make sure it uses a minimum amount of the structural material. By this reduction in the material consumption, we can contribute for constructing the sustainable built environments, and also to save the limited resources which are significant. The amount of material required i.e. the structural material, which resist the lateral loads will increase considerably as height of the building increases due to the premium for height. Nowadays, because of the high cost of the land and also because of faster growth of urban population, there is very much pressure on the limited space which have influenced the domestic development of the city. Due to all these reasons, the tall structures are emerging rapidly. As we know, these tall structures are constructed comparatively to resist the lateral loads. We know that there are many moment resisting systems, out of which diagrid structures have been chosen for the present study.

The emergence of tall structures with diagrids came into existence in the late 1960's, but it is developed and widely used more recently. In the tall buildings, the diagrids, i.e. the diagonal members are positioned in the exterior of the building, which reduces the lateral forces and also it

decreases the shear force and moment in the interior beams. The major difference that is observed when compared to conventional building is that, in conventional building there will be number of vertical columns, but in case of diagrids, vertical columns are replaced by the inclined columns i.e. the diagonals. There are many diagrids structures around the world.

2. LITERATURE REVIEW

Kyoung Sun Moon (2008) studies the stiffness based design and the characteristics of the diagrid buildings. He considered the diagrid structures which are 40 stories, 50 stories, 60 stories, 70 stories and 80 stories. The diagonals were placed at various angles with gradually change in the angles along the height of building. This is done to determine the optimum angle for individual structure with difference in height and also to observe the potential of the structure of diagrids with change in angles. In the result part, it is seen that, in the region 60° to 70° , the optimum angle was determined, and the aspect ratio is seen to be within the range of 4 to 9.

Kiran Kamath, et.al (2016) one of the seismic analysis is nonlinear pushover analysis. To know the performance of diagrids, this study has been made. Circular shape models are considered in this paper which has the aspect ratio H/B that is, height /base, ranging from 2.67 to 4.26. The angles used are 54° , 78° and 71° for external bracings in this condition. At 12m height, the base width is constant and the structure height is altered accordingly. For modeling the nonlinear response of components, FEMA 356 procedures are used in which moment curvature relationship is explained, and plastic hinge which is used for modeling is based on this relation. There is increase in the aspect ratio for 71[°] angled model base shear as taken in this study.

2.1 Objectives

- 1. To know the behaviour of tubular steel structures with variable angled "diagrid" in comparison with the tubular steel structure.
- Study is done for Steel tubular structure provided 2. with diagrids of different angles i.e., 45° , 60° , 70° .

e-ISSN: 2395 -0056 p-ISSN: 2395-0072

- 3. The Analysis is done using equivalent static method using IS 1893-2002 and dynamic time history analysis using ETABS for high seismic zone.
- 4. Efficiency of tubular steel structures with respect the base shear, displacement, drift are found out for all geometric configurations.
- 5. The influence of applying the diagrids on behavior of tall tubular steel structures is briefed using the obtained results, by concluding the optimum angle of diagrid used for tall tubular steel structures.

3. Modelling

The modeling and analysis is done for all four models using ETABS software, the analysis is done by considering seismic zone III. Tubular steel model is being compared with tubular diagrid structures. And also comparison is done among the tubular diagrid models to know the optimum angle.

_ {						2<	P (2.9
0	1		~	~	~~			1
	1	1	~~	~~	~*	~	1	1
0	1	1	1	~	~>	1	1	1
	1	1	1			1	1	1
	1	1	1			1	1	1
	1	1	1	~~	~~	1	1	1
	1	1	~	~	~	~	1	1
<u> </u>	1	1	~	~~	~~			1

Fig -1: Plan of Tubular Steel building

	2							
<u>о</u>	1	~~	~`	~~	~÷	~~	~`	1
©– ~	t	1	~	~	~	~	1	1
) (t	1	1	~	~	1	t	1
<u> </u>	t	1	t			1	t	1
	t	1	l			1	1	1
©	t	1	1	~~	~~	1	1	1
<u> </u>	t	1	~÷	~	~÷	~~	1	1
~	1	1	د ب	~~			د ب	

Fig -2: Plan of Tubular Diagrid building with 45^o Angle

Fig -3: Elevation of Tubular Diagrid Structure with 45^o Angle

Fig -4: Plan of Tubular Diagrid Structure with 60^o Angle

Fig -5: Elevation of Tubular Diagrid Structure with 60^o Angle

Fig -6: Plan of Tubular Diagrid Structure with 75° Angle

Fig -7: Elevation of Tubular Diagrid Structure with 75° Angle

3.1 Modelling Of Building Frames

Four different building models are taken and analyzed under the seismic zone III. The four models are as follows

- 1. Model 1- tubular steel structure
- 2. Model 2- diagrid structure with 45°
- Model 3- diagrid structure with 60° 3.
- Model 4- diagrid structure with 75° 4.

3.2 Description of Analytical Model

The general geometric details and structural details such as dimensions of the structural members, material properties, load intensities and seismic data considered in the modelling are as follows

No. of storey's	G+50
Building type	Tubular steel
	structure
Building dimension	40mx40m
Typical storey	3m
Height	
Seismic zone	III
Reduction factor	5
Importance factor	1
Soil type	Medium soil

Table -3.1: Details of the Building

Table 3.2: structural members of the building

Thickness of deck	0.2m
beam	ISMB600
column	ISWB600-2
Wall thickness	Glazing load is considered

Table -3.3: Material Properties of the Building

	-
Grade of concrete	M30
Grade of steel	Fe350
Density of concrete	25 KN/m ³
Young's modulus of concrete	27386x10 ³ kN/m ²
Poisson's ratio	0.2

Table -3.4: Assumed Load Intensities

slab live load	4kN/m ²
Floor finish	1.5kN/m ²
Glazing load	1kN/m ²

4. Results and Discussion

Find the results for lateral displacements, storey drift, shear force, bending moment axial force. Then compare the result to recognize the effective system between provided different bracings systems under zone IV. Resulting tables and graphs are obtainable to find efficient bracings system under following as.

4.1 Lateral Displacement

It is seen that for all the models the maximum value of displacement is found to be in the top storey. Compared to rest of the models, the model which has angle of diagrid 60° has lesser displacement values.

Table 4.1: Displacement Values

DISPLACEMENT						
Storey	Model1x	Model2x	Model3x	Model4x		
50	170.8981	88.0866	65.4585	85.2238		
49	169.7657	85.8852	64.0314	84.0924		
48	168.4763	83.6671	62.59	82.8576		
47	167.0028	81.4379	61.1354	81.6016		
46	165.3431	79.1982	59.6536	80.2963		
45	163.5012	76.945	58.1525	78.9014		
44	161.4835	74.6866	56.6333	77.4563		
43	159.2971	72.4172	55.1038	75.9631		
42	156.949	70.1425	53.556	74.3972		
41	154.4466	67.8641	51.9462	72.8202		
40	151,7972	65,5797	50.3494	71,1503		
39	149.008	63,2972	48,7754	69.4768		
38	146.0862	61.0124	47,1832	67,7604		
37	143 0390	58 7310	45 5883	65 0802		
26	120 9722	56 4577	42 0990	64 1905		
25	126 506	54.1076	43,9009	62 2552		
24	122 2141	51.0202	42.3017	60.4014		
34	133.2141	51.9293	40.7747	50,4914		
33	129.7344	49.0792	39.1705	56.0238		
32	126.1635	47.4456	37.5691	56.7231		
31	122.5078	45.2306	35.9666	54./846		
30	118.7738	43.0316	34.3733	52.8351		
29	114.9679	40.8562	32.7962	50.8779		
28	111.096	38.7009	31.2216	48.903		
27	107.1644	36.5759	29.6586	46.909		
26	103.1789	34.4836	28.1178	44.9277		
25	99.1452	32.4203	26.5897	42.9424		
24	95.069	30.3937	25.0757	40.938		
23	90.9558	28.4	23.5914	38.9505		
22	86.811	26.4518	22.1271	37.0226		
21	82.6399	24.5514	20.6807	34.6817		
20	78.4475	22.6936	19.2749	32.7706		
19	74.2389	20.8865	17.8909	30.8959		
18	70.0189	19.1258	16.5311	28.693		
1/	65.7923	17.4262	15.217	20.833		
10	61.5037	14 2111	13.9333	23.0438		
13	52,1106	12.6074	11.0803	22.8/02		
17	49 0100	11 2422	10,2107	10 2004		
13	40.9109	0.967	0 10.0	17.2004		
11	40 5469	8 5690	8 105	15 7472		
10	36 3080	7 3426	7 0842	14 004		
- 10	32 2704	6 1 9 5 2	6 1031	12 4355		
8	28,1927	5.1237	5.1684	10.7822		
7	24,1434	4,1452	4,3093	9,2584		
6	20,137	3,263	3,4953	7,7642		
5	16,1804	2,4693	2,7309	6.2464		
4	12,2863	1,7662	2,0509	4.8667		
3	8.4848	1.1565	1.429	3.5518		
2	4.8645	0.6582	0.8649	2.2002		
1	1.7122	0.2814	0.3786	0.9465		

Fig -4.1: Displacement for Different Models

4.2 Storey Drift

The results of drifts are extracted for all the models and graph has been plotted below. It is found that, for model 4 the drift value is lesser. As per IS 1893-2002 the criteria for story drift that is .004 times the height of the story is satisfied.

		DRIFT		
STOREY	MODEL1X	MODEL2X	MODEL3X	MODEL4X
50	0.000379	0.000735	0.000476	0.000377
49	0.000431	0.00074	0.000481	0.000412
48	0.000493	0.000744	0.000485	0.000419
47	0.000555	0.000748	0.000494	0.000435
46	0.000616	0.000752	0.000501	0.000465
45	0.000674	0.000754	0.000507	0.000482
44	0.00073	0.000758	0.00051	0.000498
43	0.000784	0.000759	0.000516	0.000522
42	0.000836	0.000761	0.000537	0.000526
41	0.000885	0.000763	0.000532	0.000557
40	0.000931	0.000762	0.000525	0.000558
39	0.000975	0.000763	0.000531	0.000572
38	0.001017	0.000761	0.000532	0.000594
37	0.001057	0.000759	0.000533	0.0006
36	0.001094	0.000758	0.000536	0.000609
35	0.001129	0.000754	0.000536	0.000622
34	0.001161	0.000751	0.000535	0.000623
33	0.001192	0.000746	0.000534	0.000634
32	0.00122	0.000739	0.000534	0.000646
31	0.001246	0.000734	0.000531	0.00065
30	0.00127	0.000726	0.000526	0.000652
29	0.001292	0.00072	0.000525	0.000658
28	0.001312	0.000709	0.000521	0.000666

Table 4.2: Drift Values

27	0.00133	0.000698	0.000514	0.00066
26	0.001346	0.000689	0.000509	0.000662
25	0.00136	0.000677	0.000505	0.000668
24	0.001373	0.000666	0.000495	0.000663
23	0.001383	0.00065	0.000488	0.000644
22	0.001392	0.000635	0.000482	0.000788
21	0.001399	0.00062	0.000469	0.000639
20	0.001404	0.000603	0.000461	0.000627
19	0.001408	0.000588	0.000453	0.000741
18	0.00141	0.000568	0.000438	0.000623
17	0.001411	0.000546	0.000428	0.000599
16	0.00141	0.000527	0.000418	0.00073
15	0.001408	0.000506	0.000402	0.000617
14	0.001404	0.000486	0.000388	0.000585
13	0.001399	0.000461	0.000375	0.000592
12	0.001392	0.000433	0.00036	0.000587
11	0.001384	0.000409	0.00034	0.000552
10	0.001375	0.000384	0.000327	0.000554
9	0.001364	0.000357	0.000312	0.000552
8	0.001351	0.000328	0.000286	0.000509
7	0.001337	0.000294	0.000271	0.000499
6	0.00132	0.000264	0.000255	0.000506
5	0.0013	0.000236	0.000227	0.000461
4	0.001269	0.000203	0.000207	0.000439
3	0.001208	0.000168	0.000188	0.000451
2	0.001052	0.000131	0.000162	0.000418
1	0.000571	0.000087	0.000126	0.000316

Fig -4.2: storey drift for Different Models

4.3 Time Period

As smaller the time period, the higher is the frequencies in the structure. Thus, the model 1 has higher time period which reflects on the stiffness of the components. Model 3 has lesser time period and it is subjected to reduced vibration.

L

Table	4.3:	Time	Period
-------	------	------	--------

TIME PERIOD						
Mode	Model 1	Model 2	Model 3	Model4		
1	5.943416	3.719709	3.275062	3.952147		
2	5.861811	3.717983	3.272548	3.940478		
3	3.673473	0.843878	1.080902	1.931211		
4	1.947602	0.796284	0.842964	1.233793		
5	1.918011	0.795415	0.841571	1.22813		
6	1.222897	0.364268	0.412638	0.664014		
7	1.117002	0.363784	0.411816	0.66032		
8	1.097695	0.281572	0.3607	0.6451		
9	0.786024	0.234122	0.278028	0.465082		
10	0.771293	0.233774	0.277399	0.462128		
11	0.731744	0.172266	0.216976	0.388256		
12	0.602318	0.171985	0.209701	0.357368		

Fig -4.3: Time Period for Different Models

4.4 Base Shear

From the below table of base shear we can observe that different values are obtained for each models and model 4 gives the lesser base shear value.

BASE SHEAR			
MODEL 1	MODEL 2	MODEL 3	MODEL 4
6196.41	6224.31	6172.33	6120.35

Fig -4.4: Base Shear for Different Models

5. CONCLUSIONS

- The concept of using steel bracings is one of the 1. useful concepts to increase the strength of the structure.
- 2. After the application of bracings to the building frame, lateral displacement and storey drift is decreases.
- 3. The maximum lateral displacement found within the permissible limit as specified by code (IS: 1893-2002(Part-1)) in both static and dynamic analysis, after the application of X bracing and the shear wall.
- 4. The maximum lateral displacement found within the permissible limit as specified by code (IS: 1893-2002(Part-1)) in both static and dynamic analysis, after the application of X bracing and the shear wall.
- Storey drift will maximum at the soft storey level. 5.
- 6. Use of X bracing is efficient in resisting lateral displacement and storey drift compared to other specified bracings.
- 7. When two soft storeys are present in a building at different levels than the displacement and storey drift will be higher in this case compared to building with one soft storey.
- 8. Steel bracings reduce flexure and shear demands in beams and flexure demands in columns when compared to unbraced frame.
- 9. Base shear for all the models are fairly same except model.
- 10. The soft storey in RCC framed structure is avoided but if that is necessary then it should be provided on ground storey of the structure and not at top of the structure.

REFERENCES

- 1) Kiran Kamath, Sachin Hirannaiah, Jose Camilo Karl Barbosa Noronha, "An analytical study on performance of a diagrid structure using nonlinear static pushover analysis"- published by Elsevier limited.
- 2) Kyoung sun moon, "optimal grid geometry of diagrid structures for tall buildings", architectural science review volume 51.3, pp 239-251.
- 3) Giovanni Maria Montuori , Elena Mele, Giuseppe Brandonisio, Antonello De Luca, "Secondary bracing systems for diagrid structures in tall buildings"published by Elsevier limited.
- 4) Kyoung sun moon, "Diagrid Structures for Complex-Shaped Tall Buildings"- published by Elsevier limited.
- 5) Nishith B. Panchal, Dr. V. R. Patel, Dr. I. I. Pandya, "Optimum Angle of Diagrid Structural System" International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-2, Issue-6, June 2014.
- 6) Deepa Varkey and Manju George, "Dynamic Analysis Of Diagrid System With Complex Shape" IJISET -International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 8, August 2016.