

STUDY OF EXISTING TALL BUILDING BY USING PUSHOVER ANALYSIS

A. Amarnath¹, Sajeet S.B², Tejaswini Betgeri³

Assistant Professor, Civil Engineering Dept. S.G. Balekundri Institute of Technology, Belagavi, Karnataka, India Structural Design Consultant, Bengaluru, Karnataka, India 3 M.Tech student of S.G.Balekundri Institute of Technology, Belagavi, Karnataka, India

***_____

Abstract - This study deals with the assessment of seismic performance of an existing building using non linear static analysis or Pushover analysis. The selection of G+13 existing building was with an intension to serve for commercial purpose. Analysis was carried out using ETABS 9.7.1 and also analysis of the same existing tall building which has to serve for Industrial purpose is carried out. The structural model with typical storey height of 3.5m is developed and then seismic behavior of commercial as well as Industrial buildinas having LL of 4kN/m² and 7kN/m² respectively are studied using Pushover analysis. By comparing the results one can identify whether retrofitting is recommended or not in this study.

Key Words: Seismic performance, Pushover analysis, Retrofitting.

1. INTRODUCTION

Structural engineering is having tremendous need with advancement of science and technology. One of the simple and noticeable methods is Pushover analysis which considers non linear characteristics of materials but deals with only static load cases. This analysis has become most preferred analysis method for seismic evaluation of buildings and design purposes as it is relatively simple and post elastic behavior is considered.

1.1 PUSHOVER ANALYSIS

It is a static non linear analysis under permanent vertical loads and gradually increasing lateral loads. It is a popular tool for seismic tool for seismic performance evaluation of existing and new structures. The necessity of Pushover analysis is that, as Indian buildings built over decades are seismically deficient due to lack of awareness regarding seismic behaviour of structures, it generates great demand for seismic evaluation and retrofitting of existing buildings.

Fig -1: Force-Deformation Relation in Pushover Analysis

1.2 OBJECTIVES

- 1. To determine the effective method to find strength of concrete over Non-Destructive Tests (NDT) on existing commercial building using Static Analysis.
- 2. The performance and behaviour of the existing commercial building is studied using pushover analysis.
- To study the performance and behaviour of existing 3. building which has to serve as Industrial building using pushover analysis.
- To study behaviour of the retrofitted Industrial building 4. by pushover Analysis.

2. STRUCURAL MODEL

Model is done using ETABS 9.7.1. The structural models story height of 3.5m is kept same and live load of 4kN/m² for commercial building and 7kN/m² for Industrial Building. Building plan is shown is figures below.

Fig -2: T1 type of commercial Building

Fig -3: T2 type of Industrial Building

1	; ;	۲ ا	а	н л. П П	7.	H R	7.	I I I	н н 7.	II II
1	} ≓ : , : ,				7.		<u>т.</u>	I	н н 7.	п
	; ; ;	, j			7.		7.	I	7.	II II
ļ	, , ,				7.	T T	7.	I I I	7. H	I I I

Fig -4: T3 type of Retrofitted Industrial Building

Fig -5: 3D view of T3 model after analysis

2.1 Types of models

There are three types of model

. .

- Commercial building with live load of 4kN/m² (TYPE1)

-Industrial building with live load of 7kN/m² (TYPE2)

- Retrofitted Industrial building with live load of $7kN/m^2$ (TYPE3)

		Table -1: Section	Details	
		COL	BEAM	SLAB
TYPE1	B-14	C 300X300	B 250X500	200
		C 700X700	B 700x700	200
TYPE2	B-14	C 300X300	B 250X500	200
		C 700X700	B 700x700	200
TYPE3	B-14	C 300X300	B 250X500	200
		C 700X700	B 700x700	200
		Dbl.ISMB550		

Table -2: SEISMIC LOADING ZONE AS PER IS:1893 2002

DETAILS	VALUE
R	5
Ι	1.5
Z	0.24
Sa/G	Type2

Table -3: Material Properties

MODEL TYPE	All Model
MATERIAL PROPERTIES	
Column	M35
Beam	M25
Slab	M25

Slab thickness: 200mm Dead Load: Floor finish = 2 kN/m² Roof floor finish = 3 kN/m² Imposed Load: On roof 1.5 kN/m² Hinge Assignment Beams : default M3=0 default M3=1 Columns: default P-M-M =0 default P-M-M =1 Static non linear data for PUSH1 DL=Dead load factor 1 LL=Live load factor 0.5 FF=Floor finish factor 1 EQX= 1

L

3. RESULT AND DISCUSSION

DETERMINATION OF GRADE OF CONCRETE

Table -4: Calculation of Compressive strength of concrete(fck)

Col size(mm)	700X700	
(Characterstic		
strength of		
steel) fy	500	N/mm ²
Rebar		
percentage	2.93	%
(Axial load)		
Pu=	10553	kN
(Area of		
concrete)		
Acon=	490000	mm ²
(Area of steel)		
Ast=	14357	mm ²
(Area of		
cement)Ac=	475643	mm ²
(Compressive		
strength of		
concrete)fck=	32.82871818	N/mm ²
Therefore,fck=	35	N/mm ²

3.1 Pushover Curves

Type1 model, the ultimate base shear is around 9307 kN and the corresponding roof displacement is 467mm is shown in Fig 6

Type2 model, the ultimate base shear is around 9078kN and the corresponding roof displacement is 461mm is shown in Fig 7

Type3 model, the ultimate base shear is around 53640kN and the corresponding roof displacement is 297 mm is shown in Fig 8

Fig -6: Base shear Vs Displacement of T1 model

Fig -7: Base shear Vs Displacement of T2 model

Fig -8: Base shear Vs Displacement of T3 model

3.2 Capacity Spectrum

The base shear at performance point is 8824kN and corresponding displacement is 175mm is shown in Fig 9 overall performance of building is said to be Live safety to Collapse prevention.

The base shear at performance point is 8798kN and corresponding displacement is 175 mm is shown in Fig 11 overall performance of building is said to be Live safety to Collapse prevention.

The base shear at performance point is 28311kN and corresponding displacement is 136mm is shown in Fig 13. overall performance of building is said to be in Immediate occupancy.

Fig -9: Capacity spectrum of T1 model.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2

IRJET Volume: 04 Issue: 06 | June -2017

www.irjet.net

e-ISSN: 2395 -0056 p-ISSN: 2395-0072

	U S H	OVER CURVE						-				
File												
	Step	Displacement	Base Force	A-B	B-IO	IO-LS	LS-CP	CP-C	C-D	D-E	>E	TOTAL
	0	2.673E-05	0.0000	2071	3	0	0	0	0	0	0	2074
	1	0.0544	7175.2529	1932	142	0	0	0	0	0	0	2074
	2	0.0610	7993.9146	1811	263	0	0	0	0	0	0	2074
	3	0.0660	8279.0430	1751	323	0	0	0	0	0	0	2074
	4	0.0701	8392.1162	1687	387	0	0	0	0	0	0	2074
	5	0.0834	8539.7686	1626	448	0	0	0	0	0	0	2074
	6	0.1123	8693.2324	1548	194	236	96	0	0	0	0	2074
	7	0.2689	9021.3350	1513	157	53	351	0	0	0	0	2074
	8	0.4593	9214.5381	1509	161	52	349	0	3	0	0	2074
	9	0.4693	9222.7393	1509	161	52	342	0	0	10	0	2074

Fig -10: Hinge distribution table of T1 model

Fig -11: Capacity spectrum of TYPE 2

Step	Displacement	Base Force	A-B	B-IO	IO-LS	LS-CP	CP-C	C-D	D-E	≻E	TOTAL	
2	0.0601	7722.6338	1770	304	0	0	0	0	0	0	2074	
3	0.0712	8273.9766	1724	350	0	0	0	0	0	0	2074	
4	0.0762	8395.7305	1682	392	0	0	0	0	0	0	2074	
5	0.0852	8505.1025	1625	449	0	0	0	0	0	0	2074	
6	0.1198	8679.4766	1582	306	186	0	0	0	0	0	2074	
7	0.1837	8815.9287	1545	181	150	198	0	0	0	0	2074	
8	0.3124	8937.2744	1527	168	114	265	0	0	0	0	2074	
9	0.4013	8975.2939	1522	151	55	333	0	13	0	0	2074	
10	0.4620	8990.3936	1522	151	55	329	0	1	16	0	2074	
11	0.3197	-8684.5586	2074	0	0	0	0	0	0	0	2074	

Fig -12: Hinge distribution table of T2 model

е											
Step	Displacement	Base Force	A-B	B-IO	IO-LS	LS-CP	CP-C	C-D	D-E	>E	TOTAL
0	-1.610E-05	0.0000	2468	2	0	0	0	0	0	0	2470
1	0.0457	11257.5479	2282	116	44	28	0	0	0	0	2470
2	0.2228	44683.2734	2194	171	58	45	0	2	0	0	2470
3	0.2842	53554.5039	2192	165	57	53	0	1	2	0	2470
4	0.2842	52659.9805	2192	164	57	54	0	0	3	0	2470
5	0.2842	52442.7344	2191	163	58	54	0	1	3	0	2470
6	0.2870	52830.6445	2190	160	62	54	0	0	4	0	2470
7	0.2870	52642.0625	2187	161	59	58	0	1	4	0	2470
8	0.2921	53243.0234	2185	162	60	58	0	0	5	0	2470
9	0.2921	52955.3672	2185	159	60	60	0	1	5	0	2470

3.2 Output

Table -5: Time period of T1 and T2 models

	TIME PERIOD							
	Period T1	Period T2						
1	1.495984	1.495983						
2	1.464757	1.464757						
3	1.314588	1.314585						
4	0.488513	0.488512						
5	0.479319	0.479319						
6	0.431555	0.431554						
7	0.280868	0.280868						
8	0.276684	0.276684						
9	0.251331	0.251331						
10	0.192763	0.192763						
11	0.190254	0.190254						
12	0.173095	0.173095						

L

DISPLAC	EMENTS	
	UX T1	UX T2
13	422.2494	411.0996
12	420.9112	409.7873
11	417.273	406.6111
10	407.789	398.7492
9	388.4553	382.1157
8	356.8933	353.5165
7	312.7363	311.9642
6	257.6478	258.7104
5	194.5703	196.6772
4	130.3103	132.5415
3	72.8918	74.4512
2	28.631	29.3591
1	3.8301	3.9467
BASE	0	0

Table -6: Time period of T1 and T2 models

Chart -2: Graph of Displacement (mm) showing T1 and T2 models

STOR	STOREY DRIFTS							
	DriftX T1	DriftX T2						
13	0.000729	0.000695						
12	0.001606	0.00143						
11	0.003482	0.002963						
10	0.006471	0.005635						
9	0.010106	0.009187						
8	0.013804	0.012982						
7	0.016947	0.01635						
6	0.018951	0.018638						
5	0.019324	0.019271						
4	0.017715	0.01783						
3	0.013982	0.014136						
2	0.00822	0.008321						
1	0.002367	0.002385						

Chart -3: Graph of Storey Drift ratio showing T1 and T2 models

Table -	-8:	Storev	Shear	of T1	and	T2	models
	· · ·	000109	011041				

STOREY SHEAR		
	VX T1	VX T2
13	-664.41	-714.63
12	-1266.15	-1361.86
11	-1768.38	-1902.05
10	-2180.08	-2344.88
9	-2510.26	-2700.02
8	-2767.88	-2977.12
7	-2961.95	-3185.86
6	-3101.45	-3335.9
5	-3195.36	-3436.91
4	-3252.63	-3498.49
3	-3281.94	-3529.93
2	-3292.47	-3541.09
1	-3293.88	-3542.78

TIME PERIOD		
	Period T1	Period T3
1	1.495984	1.011881
2	1.464757	0.987741
3	1.314588	0.88493
4	0.488513	0.390852
5	0.479319	0.38381
6	0.431555	0.349565
7	0.280868	0.223521
8	0.276684	0.220176
9	0.251331	0.200681
10	0.192763	0.150304
11	0.190254	0.147977
12	0 173095	0 135206

Table -9: Time period of T1 and T3 models

Chart -5: Time period graph showing T1 and T3 models

7 MODES

8

9

10 11 12

Table -10: Displacement (mm) of T1 and T3 models
--

6

DISPLACEMENTS		
	UX T1	UX T3
13	422.2494	268.5618
12	420.9112	256.3862
11	417.273	235.7482
10	407.789	205.9964
9	388.4553	165.4345
8	356.8933	114.6061
7	312.7363	68.7771
6	257.6478	56.4504
5	194.5703	45.579
4	130.3103	34.5091
3	72.8918	23.3829
2	28.631	12.3594
1	3.8301	2.3702
BASE	0	0

Table -11: Storey Drift of T1 and T3 models

STOREY DRIFTS		
	DriftX T1	DriftX T3
13	0.000729	0.004456
12	0.001606	0.007525
11	0.003482	0.010759
10	0.006471	0.014522
9	0.010106	0.018144
8	0.013804	0.016801
7	0.016947	0.004782
6	0.018951	0.004269
5	0.019324	0.004342
4	0.017715	0.004362
3	0.013982	0.004325
2	0.00822	0.003925
1	0.002367	0.001636

© 2017, IRJET

0 1

3 4 5

2

STOREY SHEAR		
	VX T1	VX T3
13	-664.41	-8232.8
12	-1266.15	-15689
11	-1768.38	-21912.2
10	-2180.08	-27013.7
9	-2510.26	-31104.9
8	-2767.88	-34297.1
7	-2961.95	-36780.9
6	-3101.45	-38626.7
5	-3195.36	-39869.3
4	-3252.63	-40627.7
3	-3281.94	-41019.4
2	-3292.47	-41166.2
1	-3293.88	-41175.9

Table -12: Storey Drift of T1 and T3 models

Chart -8: Storey Shear graph showing T1 and T3 models

4. CONCLUSIONS

PUSHOVER ANALYSIS

- 1) By comparison of T1 and T2 models, as expected we got the results with failure of columns.
- 2) By using steel sections, in between failed columns, one can reduce the earthquake responses like displacements and storey drifts.
- This work has showed the method to determine the strength of columns without using any Non Destructive Tests(NDT's)
- 4) By comparing T1 and T3 models, we seen that as T1 model results shown in the region of Live Safety to Collapse Prevention we decided to make retrofitting and hence results obtained of T3 model fell in region of Immediate Occupancy.

REFERENCES

- Patel Jalpa R, Rajgor Bharat G [December 2016]"Analysis of an existing building" E-ISSN Number - 2321-9939 Volume 4 | Issue 4
- 2) Hamidreza Nahavandi [Aug. 2015] "Pushover analysis of Retrofitted RC Buildings" Civil and Environmental Engineering Master's Project Reports. 21.
- Neethu K.N. and Saji K.P. [August 2015] "Pushover analysis of RC building.", ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438. http://pdxscholar.library.pdx.edu/cengin_gradproj ects/21
- 4) S.C.Pednekar, S.B.Patil. [October 2015]., "Seismic Pushover analysis of Reinforced Concrete Structures" ICQUEST 2015 - Number 6.Year of Publication: 2015
- 5) A.E. Hassaballa, M. A. Ismaeil [June. 2014] "pushover analysis of existing four storey RC flat slab building" Vol.4 No.2, June 2014.
- 6) Nivedita N. Raut and Swati D. Ambadkar[2013] "pushover analysis of multistoried building" Vol 13, No 4-E (2013)
- 7) Mohd. Anwaruddin, Mohd.Zameeruddin[2013] "pushover analysis of medium rise multi-storey RCC frame with and without vertical irregularity ISSN(Online): 2319-8753 ISSN (Print): 2347-6710
- 8) Dinesh J. Sabu and Pajgade[2012] "Seismic Evaluation of Existing Buildings." ISSN 2229-5518
- 9) Ramaraju et al.,[2012] "Pushover analysis for typical G+5 office building"
- Vojko Kilar and Peter Fajfar "Simplified Pushover analysis of Building Structures First published: February 1997.
- 11) IS-875, part 1 [1987], Bureau of Indian standards, for dead loads on buildings and Structures, New Delhi, India.
- 12) IS-875, part 2 [1987], Bureau of Indian standards, for live loads on buildings and Structures, New Delhi, India.
- 13) IS-1893, part 1 [2002], Bureau of Indian standards "Criteria for earthquake resistant design of structures: Part 1 General provisions and buildings", New Delhi, India.
- 14) Indian Standard plain and reinforced concrete code of practice (Fourth Revision): IS 456 : 2000

© 2017, IRJET