
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 331

Auto conversion of serial C code to CUDA code

1Tejas Gijare, 2Vishal Bafna, 3Chaitanya Subhedar, 4Aniket Ingale

Computer Engineering Department, Zeal College of Engineering and Research Pune, India

---***--

Abstract - As the GPU is growing demand of the Game

Industry and large scientific computations , efforts have

been made to take advantages to gain maximum utilization

of GPUs in computation. GPUs follow architecture named

CUDA- Compute Unified Device Architecture. And to use

GPUs there is a language CUDA C which is extension to C.

But CUDA C needs to be learned by the developers. Though

GPUs are widely used in Supercomputers today , they are

not portable because one has to sit and code the

algorithms in CUDA to run them on GPU. So if we can have

some middleware that converts the C programs to CUDA,

the end user gets transparency. We tried to develop a

prototype compiler that is in visual studio and converts the

C programs in CUDA C language. The paper describes the

Pattern approach to develop a translator for source code

to source code translation.

Keywords: Parallel Computing, Serial Computing, CUDA,

GPU, HPC

Introduction:

Because of the demands of game industry, Graphics

Processing Units (GPUs) have evolved from application-

specific units for 3D scene rendering into highly parallel

and programmable multi pipelined processors that can

satisfy extremely high computational requirements at low

cost. The fact that the performance of graphic processing

units (GPUs) is much bigger than the central processing

units (CPUs) of now-a-days [1] is hardly surprising. GPUs

were formerly focused on such limited field of computing

graphic scenes. Within the course of time, GPUs became

very powerful and the area of use dramatically grew. So,

we can come together on the term General Purpose GPU

(GPGPU) denoting modern graphic accelerators. The

driving force of rapid rising of the performance is

computer games and the entertainment industry that

evolves economic pressure on the developers of GPUs to

perform a vast number of floating-point calculations

within the unit of time. The research in the field of GPGPU

started in late 70's. Today's fastest GPUs can deliver a peak

performance in the order of 500 GFLOPS , more than four

times the performance of the fastest x86 quad-core

processor. This thesis introduces a source to source

transformation of c programs to CUDA Architecture. It also

finds out dependencies and performs optimization for

peak performance gain. Automatic evolution of kernels,

independent code finding, Loop unrolling, Memory

coalescing and thread scheduling are main part of

concerns. IR level optimization and higher level

optimizations patterns finding is important issue that may

be covered by this thesis. Thesis describes parallelization

patterns and CUDA C extensions from C to find out

transformation rules.

Introduction to ANTLR3:

ANTLR, ANother Tool for Language Recognition, is a

language tool that provides a framework for constructing

recognizers, interpreters, compilers, and translators from

grammatical descriptions containing actions in a vari-ety

of target languages. ANTLR has a sophisticated grammar

development environment called ANTLRWorks. ANTLR

provides environment to develop a compiler that parses

the input program. Lexer and Parser code can be

generated in C#, C, Java, Python etc.

C2CUDATranslator Flow:

The flow of the translator shows the overall functionality
and proper compiler structure. The input is C file which is
pre-processed input to translator. The input is given to C
Parser which is generated using ANTLR grammar and
contains two files lexer and parser. Lexer generates tokens
and using ITokens interface the parser rules are parsed
and the code is checked using the parser. The symbol table
is generated. The preprocessor outlines the kernel by
pragma pack. Before starting the kernel region the line
with "#pragma kernel start" comes. So the compiler can
know that the next statements are of kernel region which
will be ported on the GPU. The kernel is finished with the
statement "#pragma kernel end". The translator uses

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 332

symbol table and converts the kernel region with kernel
function.

Figure 1: Flow of the C2CUDA Translator

For kernel code writing the translator performs 5 steps
shown in figure above. They are nothing but the proposed
patterns in previous sections. The translator generates
codes for memory allocation on both host and devices and
auto generates required pointers and variables. After that
it ports the kernel region in kernel function. After
parallelization is added it will be ported on many threads
and blocks.
Finally, the CUDA File code is generated and extra
functions in .c file are as it is in .cu file.

Compiler Style:

For kernel region compiler has a unique style. There are
some projects that start but never reach to the end. The
algorithms for parallelization are more and time to add all
of them are not enough for thesis. So I tried to implement a
mechanism in which one can add more algorithms if one
wants to. Here compiler generates patterns for the input
program. By the time we can see there are N numbers of
programs and infinite. New programs and algorithms will
be introduced to the CUDA by the time. So there will be N
number of patterns. Patterns are the heart of the compiler.
Pattern describes the mechanism for the compiler like
virus signature does in Antivirus software. New virus are

always generated and corresponding signatures are also
made in antivirus. Similarly new patterns can be added
later and so on.

Figure 2: Compiler Style

Results and Evaluations:

The compiler is tested with parboil benchmark suite. The
graph shows the comparison between CUDA BASE
programs, which are handwritten and fully optimized and
C2CUDATranslator converted programs.

Figure 3: Evaluation of C2CUDATranslator

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 333

Conclusion:

The C2CUDATranslator saves 95% of the development
translation time. This can also be used as a framework for
future translator development for other developers.

References:

[1] Purcell T. J., Buck I., Mark W. R., Hanrahan P., Ray
tracing on programmable
graphics hardware, ACM Transactions on Graphics 21, 3
(July 2002), pp 703712.

[2] Knott D., Pai D. K., CInDeR: Collision and interference
detection in real-time using graphics hardware,
Proceedings of the 2003 Conference on Graphics Interface,
June 2003, pp. 7380.

[3] Svetlin A. Manavski, "Cuda compatible GPU as an
efficient hardware accelerator for AES cryptography" Proc.
IEEE International Conference on Signal Processing and
Communication, ICSPC 2007, (Dubai, United Arab
Emirates), November 2007, pp.65-68.

[4] T. D. Han and T. S. Abdelrahman, "hiCUDA: High-Level
GPGPU Programming",
IEEE Transactions on Parallel and Distributed Systems,
Jan.2011, vol. 22, no. 1, pp. 78-90.

[5]Yu Liu, M. Huang, B. Huang, H.-L. A Huang, and T.Lee,
"GPU-Accelerated Longwave Radiation Scheme of the
Rapid 1508 Radiative Transfer Model for General
Circulation Models (RRTMG)" IEEE J. Sel. Top. Appl. Earth
Observ. Remote Sens., vol. 7, pp. 3660-3667, Aug, 2014.

