

A STUDY ON SELF-COMPACTING GEOPOLYMER CONCRETE WITH AN ALKALINE ACTIVATOR RATIO AND DIFFERENT ALKALINE ACTIVATOR **TO CEMENTITIOUS BINDER RATIOS**

Ishwar K Naganur¹, Ramesh B M², Dr. Venkatesh Babu³, Nagaraj V K⁴, Veerendra Arikeri⁵, Niranjan R Patil⁶

> ¹PG Student, Department of civil engineering SJBIT, Bengaluru ²Assistant Professor. Department of civil engineering SJBIT, Bengaluru ³ Professor& HOD Department of civil engineering ACS College of Engineering. ⁴*PhD Research Scholar, ISSATE College, Bengaluru, India.* ⁵*PG Student, Department of civil engineering DSCE, Bengaluru* ⁶PG Student, Department of civil engineering SJBIT, Bengaluru ***______

Abstract - Geopolymer is considered as an inorganic member and it aims in complete elimination OPC which is used in concrete. Geopolymer as a material of construction is gaining its importance day to day. This technology was first coined by a French Professor by name Joseph Davidovits. This mainly utilizes alkaline solutions like silicates of sodium or potassium and hydroxides of sodium or potassium along with industrial by-products like GGBS, fly ash etc. The alkaline solution undergoes a reaction known as polymerization, then reacts with by-products thus produces a binding property. In this work Fly ash and GGBS are used as binder material, alkaline activators like sodium hydroxide flakes and sodium silicate, M-sand as fine aggregates, 12.5mm down coarse aggregates ,6% of water reducing admixture and fresh water were used to produce self-compacting geo polymer concrete(SCGC). Fresh, hardened and durability properties of SCGC are studied and curing of specimens was carried out in ambient Temperature.

Key Words - self compacting geo-polymer concrete, polymerization, by-products of industry alkaline solutions, Ambient curing.

1.INTRODUCTION

The main requirement for construction is concrete. As per literature survey conducted, concrete is considered as second most utilized material on land. It uses Portland cement as its main product. Cement industry emits greenhouse gas like carbon di-oxide which causes global warming. It causes 68% of global warming. Cement industries emits about 12% of greenhouse gas into the atmosphere. Therefore, in order to eliminate environmental ill effects an alternate binding material should be made use to make concrete.

Geopolymers are mainly considered as inorganic family members which usually forms a mineral links with a particular co-valent bonds. Its Chemical composition is same

as zeolite and with an amorphous structure. The alumina and silica present in GGBS and fly ash reacts with alkaline solution and produces a binding property. In this work silicate and hydroxides of sodium is used as it is economical.

2. SCOPE AND OBJECTIVE

i. Scope

The main scope of this present study is to evaluate the various characteristics of SCGC by differing the alkaline to binder ratio and by replacing fly ash by GGBS. The various types of material used in this in this study are fly ash, GGBS, sodium hydroxide, PCE based superplastizer, water and sodium silicate.

To improve the different engineering properties and to cure the SCGC samples under ambient temperature.

ii. OBJECTIVES

- 1. To study the characteristics of SCGC in its fresh state & mechanical behavior in its harden state.
- 2. To carry out different durability studies on SCGC.
- 3. To fix the optimum ratio of alkaline to binder ratio used in the mix.
- 4. To effectively utilize by products like fly ash, GGBS and to produce an eco-friendly material.

3. MATERIALS USED AND TESTING:

The Various types of materials used in this SCGC are

Fig.2-Flyash

Fig.4-Na2Sio3

Fig.1- GGBS

Fig.3-NaoH

Fig.5-M-Sand

Fig.6- Coarse aggregates

Fig.7-Superplastizers

Fig.8-water

All the materials shown are used to produce SCGC which is tested as per Indian standards.

Table-1: Properties of GGBS

Sl.No	Properties	Results
1	colour	White
2	Specific gravity	2.73
3	Fineness by using 90µ sieve	6%

Table-2: Properties of Fly ash

Sl.No	Properties	Results
1	Colour	Grey
2	Specific gravity	2.36

Coarse aggregate-12.5mm down and Fine aggregate – M-sand as per sieve analysis

4.MIXING, CASTING AND CURING:

In this work Sodium hydroxide concentration of 5&10M is prepared and then mixed with sodium silicate. this mix should be prepared one day before casting of specimens and it should be used within 36 hours.

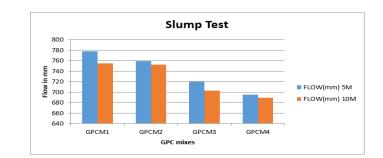
Mixing was carried out in a pan mixer, the dry materials like Fly ash, GGBS and aggregates were dry mixed for 5 minutes. The alkaline solution was then poured to dry mix and this mix was mixed for 5 minutes.

The mix under its fresh state is then transferred to respective molds. The specimens were then cured at ambient temperature and after 24 hours the casted specimens were de-molded and once again cured at ambient temperature.

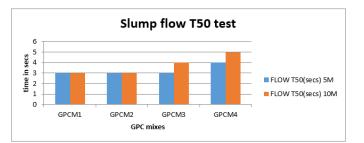
Fig.9- Mixing of SCGC

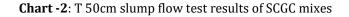
Fig 10 –moulds used for casting specimens.

International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2395 -0056International Research Journal of Www.irjet.netp-ISSN: 2395-0072

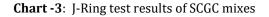

Fig 11-ambient curing of SCGC

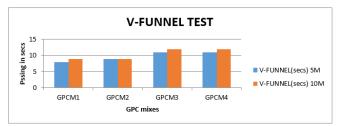
5.TEST RESULTS:


i)WORKABILITY


Table-3: workability values for GPC1, GPC2, GPC3& GPC4 mixes all are of 70%-Fly ash and 30%-GGBS.


	GPCM1		GPCM2		GPCM3		GPCM4	
MIX NO.	G1	G2	G3	G4	G5	G6	G7	G8
AAR	2	1	4	1	2	1	Z	1
Activator to binder	.'	4	.4	-5		5	.5	5
MOLARIT Y	5	10	5	10	5	10	5	10
Flow(mm)	77 8	75 5	75 9	75 2	72 0	70 3	69 5	68 9
T50(secs)	3	3	3	3	3	4	4	5
J Ring(mm)	5	6	6	7	6	9	9	9
VFUNNEL (secs)	8	9	9	9	11	12	11	12
V-FUNNEL T5 mins(secs)	6	9	9	10	13	15	14	14
L BOX(h2/ h1)	.8	.8	1. 0	.9	.7	.9	.9	.9
U BOX (mm)	20	22	22	26	24	28	27	28




Chart -1: Slump flow test results of SCGC mixes

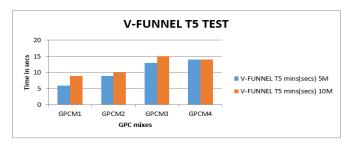


Chart -4: V-Funnel test results of SCGC mixes

Chart -5: V-Funnel T5 minutes test results of SCGC mixes

L

International Research Journal of Engineering and Technology (IRJET) www.irjet.net

e-ISSN: 2395 -0056 p-ISSN: 2395-0072

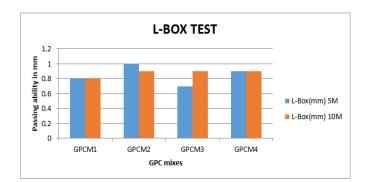


Chart -6: L-Box test results of SCGC mixes

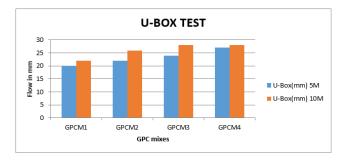


Chart -7: U-Box test results of SCGC mixes

ii) COMPRESSIVE STRENGTH TEST RESULTS:

Fig 11- compressive strength test for SCGC mixes

	Mix.n	AA	Activat	Molari	Compressive		
GPC1	0	R	or to	ty	Strength(MP		
(70%			Binder		ä	a)	
FA+					7da	28da	
30%GGB					ys	ys	
S)	G1	4	.4	5	32.3	37	
	G2			10	38	42.7	

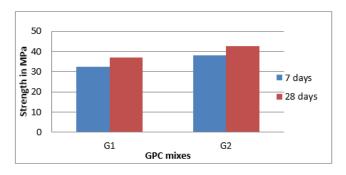


Chart -8: Compressive strength test values for GPC1 mix

Table-5: compressive strength test values for GPC2 mix

	Mix.	AA	Activa	Molar	Comp	oressiv
GPC2	no	R	tor to	ity		e
(70%			Binder		Stren	gth(M
FA+					Р	a)
30%GG					7da	28da
BS)					ys	ys
	G3	4	.45	5	37	42
	G4			10	41	46.8

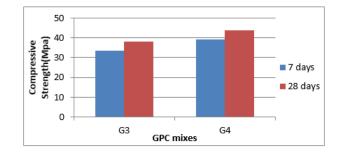


Chart -9: Compressive strength test values for GPC2 mix

Table-7: compressive strength test values for GPC3 mix

	Mix.	AA	Activa	Molar	Compressiv		
GPC3	no	R	tor to	ity		e	
(70%			Binder		Stren	gth(M	
FA+					Р	a)	
30%GG					7da	28da	
BS)					ys	ys	
	G5	4	.5	5	44	52.8	
	G6			10	50	54.3	

L

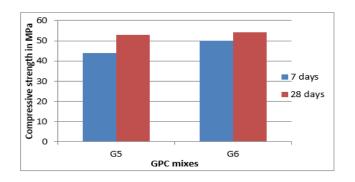


Chart -10: Compressive strength test values for GPC3 mix

Table-8: compressive strength test values for GPC4 mix

	Mix.n	AA	Activat	Molari	Comp	ressiv
GPC4	0	R	or to	ty	e	e
(70%			Binder	-	Stren	gth(M
FA+					Pa	a)
30%					7da	28d
GGBS)					ys	ays
	G7	4	.55	5	46	53.2
	G8			10	53	57

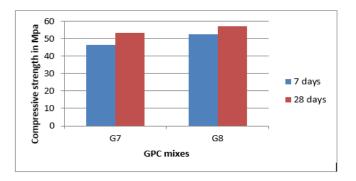


Chart -11: Compressive strength test values for GPC1 mix

iii) TEST ON SHRINKAGE RESULTS:

Fig 12-Drying Shrinkage test for SCGC mixes

Table-9: Drying shrinkage test values for GPC mixes

		Initial	Wet	Dry	Drying
	Trial no.	length (a)	length (b)	length (c)	shrinkage (DS)=((a- b)/c)*100
GPC1	G1	1.756	1.740	162.63	.001
	G2	2.156	2.099	162.6	.004
GPC2	G3	1.165	1.101	162.47	.004
	G4	2.453	2.379	162.89	.005
GPC3	G5	2.543	2.449	162.5	.006
	G6	2.153	2.056	162.53	.006
GPC4	G7	2.189	2.051	162.59	.008
	G8	2.986	1.863	162.63	.008

iv) DURABILITY TEST RESULTS:

a) WATER ABSORPTION TEST RESULTS

Fig 13-water absorption test for SCGC mixes

p-ISSN: 2395-0072

Table-9

-9: water absorption test values for GPC		
mixes	Г	

		GP		GP			C3		C4
Mi	x.no	G1	G2	G3	G4	G5	G6	G7	G8
Activ	ator to	.4	4	.4	5		5	.5	5
binde	er ratio		-						
Alk	aline	4	4	4	4	4	4	4	4
acti	vator								
	atio								
Mo	larity	5	10	5	10	5	10	5	10
	Dryin								
24h our wat	g weigh t of speci men (kg)	8.0 84	7.9 81	8. 0	7.9 09	8.0 22	7.7 50	8.1 01	8.1 47
er(Densi	23	23	23.	23	23	22	24	24
H_20	ty(kg	95.	64.	87.	43.	76.	96.	00.	13.
)	$/m^{3}$)	26	74	85	41	89	30	30	93
abs orpt ion	Wet weigh t of speci men (kg)	8.0 93	7.9 11	8.0 7	7.9 24	8.0 64	7.7 89	8.1 16	8.1 66
	Wate r absor ption perce ntage	.11 1	.12 5	.13 6	.19 0	.52 3	.50 3	.18 5	.23 3

b) SORPITIVITY TEST RESULTS:

c) Fig 14-sorpitivity test for SCGC mixes

	Mi	Alk	Acti	Mol		V	Vater	(H ₂ 0)		
	x.n 0	alin e acti	vat or to	arit y			Abso	rbed		
		vat or rati o	bin der rati o		15 mi n	3 0 m in	1 ho ur	24 ho ur	48 ho ur	72 ho ur
G P C M 1	G1	4		5	.00 00 3	.0 0 1 9	.0 00 21	.0 00 29	.0 00 39	.0 00 51
	G2	4	.4	10	.00 00 4	.0 0 0 1 9	.0 00 20	.0 00 26	.0 00 37	.0 00 52
G P C M 2	G3	4		5	.00 00 2	.0 0 1 7	.0 00 19	.0 00 26	.0 00 34	.0 00 51
	G4	4	.45	10	.00 00 3	.0 0 1 9	.0 00 20	.0 00 24	.0 00 34	.0 00 51
G P C M 3	G5	4		5	.00 00 9	.0 0 2 6	.0 00 28	.0 00 36	.0 00 47	.0 00 56
	G6	4	.5	10	.00 00 9	.0 0 2 4	.0 00 29	.0 00 34	.0 00 43	.0 00 54
G P C M 4	G7	4	.55	5	.00 00 6	.0 0 2 3	.0 00 25	.0 00 32	.0 00 41	.0 00 5
	G8	4		10	.00 00 7	.0 0 2 2	.0 00 23	.0 00 32	.0 00 43	.0 00 5

Table-9: Sorpitivity test values for GPC mixes

b) PERMEABILITY TEST RESULTS:

Fig 15–permeability test for SCGC mixes

Table-11: permeability test values for GPC mixes

	Mix.	Activat	Alkalin	Molari	Avg. depth of
	no	or to	е	ty	penetration
		binder	activat		of
		ratio	or		water(mm)[
			ratio		DIN-1048]
GPC	G1	.4	4	5	86.7
M1	G2		4	10	83.9
GPC	G3	.45	4	5	90.6
M2	G4		4	10	89.8
GPC	G5	.5	4	5	138.9
M3	G6		4	10	129.8
GPC	G7	.55	4	5	160.7
M4	G8		4	10	157.6

c) RAPID CHLORIDE PENETRATION TEST(RCPT):

Fig 16–RCPT test for SCGC mixes

Table-12: RCPT test values for GPC mixes

	Mix	Activat	Alkalin	Molarit	Coulomb
		or to	е	у	passed[AST
	no	binder	activat	-	M C-1202-
		ratio	or		10]
			ratio		
GPCM	G1	.4	4	5	5586.9
1	G2		4	10	5575.5
GPCM	G3	.45	4	5	5559.6
2	G4		4	10	5540.8
GPCM	G5	.5	4	5	5564.85
3	G6		4	10	5532.9
GPCM	G7	.55	4	5	5601.5
4	G8		4	10	5593.7

3. CONCLUSIONS

1. SCGC reduces environmental ill effects when compared to OPC.

2. For any SCGC mix the workability improves with decrease in alkaline activator to cementitious binder ratio.

3. Compressive strength increases with increase in alkaline activator to cementitious binder ratio.

4. Increase in molarity of NaOH improves compressive strength.

5. The optimum mix for SCGC is when activator to binder ratio is 0.45 and molarity is 5M.

6. The 24-hour water absorption, permeability, sorpitivity, RCPT, Drying Shrinkage, is low for mix having low activator to binder ratio.

7. The casted SCGC mix samples were cured at ambient temperature to check the suitability at in situ condition.

ACKNOWLEDGEMENT

RMC INDIA, SCC CONCRETE, JYOTHI CONMIX, Sanjeev Patgar, Paniraj B.N, Shivraj M Kalahal, Praveen Nayak, Dinesh H T and Umesha S of BUREAU VERITAS, Bengaluru, *Swapnil cholekar, Assistant Professor. Department of civil engineering KLE'S, Belagavi.*

REFERENCES

1. Davidovits J (1991), 'Geo polymers: Inorganic Polymeric New Materials' J. Thermal Anal. 37: 1633-1656.

2. Davidovits J., 'Soft Mineralogy and Geo polymers', Proceedings of Geo polymer 88 International Conference, France, 1988.

3. Davidovits J., 'High Alkali Cements for 21st century Concretes in Concrete Technology, Past, Present and Feature', Proceedings of V. Mohan Malhotra Symposium, ACI SP-144, pp.383-397, 1994.

4. Joseph Davidovits, (1994), 'Global Warming Impact on the Cement and Aggregates Industries', World Resource Review, Vol 8, No. 2, pp.263-278.

5. Nagaraj. V. K1 Geo Polymer Concrete – A Look over 1 Research Scholar, Department of Civil Engineering, JSS Academy of Technical Education, Bengaluru, Karnataka, India

6. Nagaraj. V. K1, Puttaswamy. B. K2A Study on Wood Ash Based Lye as Alkaline Activator in Geo-Polymer Concrete P.G. Student, Dept. of Civil Engineering, Sri Venkateshwara College of Engineering, Bengaluru, Karnataka, India1 Assistant Professor, Dept. of of Civil Engg, Sri Venkateshwara College of Engg, Bengaluru, Karnataka, India2

BIOGRAPHIES

ISHWAR K NAGANUR, PG Student, SJBIT Bengaluru.

RAMESH.B.M Assistant Professor, SJBIT, Bangalore

Dr. D.L. VENKATESH BABU Prof.& HOD ACS College of Engg.

NAGARAJ V K. PhD Research Scholar, JSSATE College, Bangalore, India.

VEERENDRA ARIKERI, PG Student DSCE Bengaluru.

NIRANJAN R PATIL, PG Student SJBIT Bengaluru.