
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2851

Enhancing Performance and Fault Tolerance of Hadoop cluster

Chetan Singh1, Rajvir Singh2

1M. Tech scholar, Computer Science Department, D.C.R.U.S.T., Murthal
2Assistant Professor, Computer Science Department, D.C.R.U.S.T., Murthal

---***---

Abstract - New approach to make a system more fault
tolerant is to expect failures rather than trying to avoid it.
Here, by fault tolerance, we do not mean that there will be no
or less failure in the system, instead, it means how the system
deals with the failure when it occurs. In hadoop clusters, faults
are handled by applying various measures like many copies of
data blocks are maintained over several HDFS nodes, re-
execution of map and reduce tasks is scheduled if it fails
during execution. This re-processing of jobs can, however,
decrease the efficiency of job execution. To this end, we are
proposing a method to identify faulty nodes of the cluster and
remove them to increase the job execution efficiency of the
cluster. Our experiment shows that overall efficiency of cluster
is improved by our method.

Key Words: Hadoop, HDFS, MapReduce, Fault tolerance,
Blacklist node.

1.INTRODUCTION

With the rise of continuous advancement in technologies
such as big data and cloud computing, the architecture of
high performance computing and distributed systems have
become even more complicated. Fault-tolerant computing
involves intricate algorithms which make it extremely hard.
It is simply not possible to construct certainly foolproof,
100% reliable fault tolerant machines or software. Thus the
task to which we should focus on is to reduce the occurrence
of failure to an “acceptable” level.
Distributed systems have capability of large scale processing
and MapReduce[1] provides a simple way to achieve it.
Hadoop[2] has already been successfully applied as an open
source implementation of MapReduce. Hadoop has two
major components: MapReduce (execution engine) and
HDFS (hadoop distributed file system). Both of these
components provide fault tolerance[3] to some extent.
First, HDFS[4] provides fault tolerance through replication
by splitting files into equal sized data blocks and replicating
it over several HDFS nodes, so that, if any one node shows
sign of failure, data can still be recovered from other
replicated nodes. Second, MapReduce handles the task
failures by re-assigning them to other nodes and also
handles the node failures by re-scheduling all tasks to other
nodes for re-execution. In other words, we can say, HDFS
provide fault tolerance to the storage part of the distributed
system and MapReduce provide job level fault tolerance.
One of the reasons of the degradation in efficiency of a
hadoop cluster is the repetitive failure of some faulty nodes,
which prevent smooth execution of jobs because tasks have

to be re-scheduled on every failure which acts as an
overhead for the overall cluster.
For this purpose, in this paper we have proposed a
mechanism to detect these faulty nodes of the cluster and
reset the cluster by removing such nodes to increase the
overall performance of the cluster. We proposed a blacklist
based faulty node detection method in which performance of
a node is monitored and according to the number of task
failures, a node is categorized as an active node or a
blacklisted node. By monitoring the status of a node i.e. how
often a node has been blacklisted, we can consider a poorly
performing node to be a faulty node. In the end, our
empirical experiment shows the increase in performance
due to our proposed method.
The remaining paper contain the following sections: Section
2 contains some background of hadoop. Previous work done
is reviewed in Section 3. Our proposed method is explained
in Section 4. Experiments conducted are discussed in section
5 and then result and conclusions are discussed in the last
section.

2. GROUNDWORK

This section contains some background information about
hadoop. Hadoop is an open source project hosted by Apache
Software Foundation.[5]

Fig -1: Hadoop Architecture

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2852

Hadoop has two major components:

• A File System (HDFS)

• Programming Paradigm or execution engine (Map
Reduce)

1) Hadoop Distributed File System: HDFS deals with two
types of nodes – Namenode and Datanode. HDFS follows
master – slave architecture where namenode acts as a master
and datanode acts as a slave. Namenode contains the
information of all the datanodes involved in the cluster and
helps in coordination, managing file system namespace and
overall node management. Datanode store and retrieves
block as commanded by the client or the namenode. HDFS
data blocks are much larger in size (64 MB by default) than
that of the normal file system[6]. The size of data blocks is
kept this large in order to reduce the number of disk seeks.

Multiple copies of data blocks are replicated over several
nodes so that data can be recovered if some block goes
missing due to some task failure or node failure[7]. In order
to accomplish this smoothly, replicated copies must be
consistent

Fig -2: HDFS Architecture

with the original data block. Any write operation on the

data block must be reflected in all its replicas to maintain

the overall consistency of the cluster data.

2) MapReduce: MapReduce acts as the programming
model for hadoop. Fig 3 shows the work flow of MapReduce
which is explained as follow:

First, input is broken down into smaller divisions of
favourable size. These partitions are then supplied to various
map tasks which perform processing on them according to
the design of the map functions. Map tasks produce the

intermediate result as sequence of key-value pairs which is
defined by the code written for map function. These
intermediate results are then passed to some reduce nodes
by some partition functions. The process of sorting and
shuffling takes place between the mapping and reducing
phase. Sorting takes place to assure that same key value ends
with the same reduce tasks. The code written for reduce tasks
will then defines that how the combination process will take
place. Then, by working one key at a time, reduce tasks will
combine all values associated with it.

The master node of hadoop runs jobTtracker which handles
the management and scheduling of several tasks. The slave
nodes run taskTracker where actual mapping and reducing
takes place.

Fig -3: Working process of MapReduce

Master node detects the failure of a node by periodically
pinging all its slave nodes. If a node does not reply for specific
interval of time, then the master node consider it as failure of
the node. Now, all the map tasks which were assigned to that
node, have to be re-executed even if it had completed because
the results of that computation would be available on that
node only for the reduce tasks. These map tasks are then
marked as idle by master and they get re-scheduled on a
worker when a worker becomes available. The master must
also update the information to each reduce task regarding the
change of the location of its input from that map task.

3. PREVIOUS WORK

There also has been some other work done in the field of
fault tolerance in hadoop’s MapReduce paradigm. Peng Hu et
al.[8], proposed an alternative method for failure detection
of nodes rather than completely depending upon the timeout
mechanism of native hadoop. The authors proposed a trust
based failure detection algorithm to detect failures earlier as
compared to native hadoop. After detection of failure, a

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2853

checkpoint based recovery algorithm has also been
proposed by the authors.

Matei Zaharia et al.[9], proposed a method to improve the
total execution time of the cluster. Authors proposed a
scheduling mechanism based on the longest approximate
time taken to end a job and uses longest remaining time as a
measure for scheduling various tasks.

Borthakur et al.[10], proposed a method to handle Single
Point Of Failure (SPOF) i.e. failure at master node
(namenode), which contains all the metadata of all
datanodes. Author introduced a concept of avatar node
which takes place of a master node in case of master node
failure.

Quan chen et al.[11], proposed a self – adaptive MapReduce
scheduling algorithm which helps in scheduling map and
reduce tasks by adjusting time weight of each stage of map
and reduce according to the historical information collected
earlier which was stored on every node and updated after
every execution. This scheduling reduces the overall
execution time of the job and hence increase the
performance of the cluster.

In our paper, we have proposed a mechanism to improve the
total execution time of a job by identifying and removing
those particular nodes (faulty nodes) which are bringing the
overall cluster down with them by lagging behind in
completion of the job.

4. PROPOSED WORK

In hadoop, execution engine i.e. MapReduce perform in three
stages. First, Map tasks are performed during first stage and
their intermediate results are saved to the local storage. Note
that we have to re-execute all the map tasks in case of failure
because their results are stored on the local disk(s) of the
failed machine and hence, are inaccessible after failure of the
machine[12]. Second, sorting and shuffling of intermediate
result takes place. Sorting takes place to assure that same
key value ends with the same reduce tasks. Local results are
transferred to reduce tasks during the shuffling stage. Third,
the results are saved to the global file system (HDFS) after
the completion of reduce tasks[13].

In this section, we proposed a blacklist based faulty node
detection method to detect the nodes which is considerably
degrading the overall performance of the cluster. These
nodes are then removed from the cluster so that future jobs
are not assigned to them and master does not need to apply
extra overhead in continuously sending heartbeat messages
to those nodes to check their “liveness”.

ALGORITHM – Blacklist Based Faulty Node
Detection:

1. Setup a hadoop ultimode cluster by adding
necessary metadata information to the ‘masters’
and ‘slaves’ files of each node.

2. Set a threshold value ‘θ1’ for each node associated
with cluster and let ‘Nf’ be the number of failure of
tasks for a job.

3. Assign a job to the cluster and check:
i. if Nf < θ1, continue job execution until

completion of the job.
ii. Else, add the node to the list of blacklisted

nodes and stop further scheduling of tasks
to that node.

4. After the completion of the current job, remove the
nodes from the list of blacklisted nodes.

5. Maintain a record of the number of times a node has
been blacklisted, let it be Nb.

6. Set a threshold value ‘θ2’ for every node such that, if
Nb reaches θ2, than that node is considered as the
faulty node.

7. Remove this node from the cluster to prevent any
scheduling of future jobs on it, as it has been
identified as the faulty node.

Once the faulty node has been detected using above
mentioned algorithm, then that node will be removed from
the cluster. The threshold values θ1 and θ2 must be chosen
carefully depending upon the size of the cluster and the type
and size of the job to be assigned to the cluster.

5. EXPERIMENT AND RESULT

To perform our experiment, we first need to setup a
multimode cluster. We have installed four Ubuntu machines
on a single PC using Vmware. Each machine is assigned 2GB
RAM and 100GB hard disk. We let one of these nodes to be a
master node and others will act as slave nodes.

Master node will run namenode, secondary namenode and
nodemanager on its machine and datanode and
resourcemanager will run on each of the slave node. Note
that, nodemanager is the jobtracker and resourcemanager is
the tasktracker and they have to be run on master and slave
nodes respectively.

We have chosen the job of calculating the value of ‘pi’ using
hadoop mapreduce. Using the command: pi 64 100000000,
we set 64 map tasks for the job and 100000000 samples will
be generated per map task. In our experiment, we will
determine execution time of this job before and after
applying our mechanism

As shown in fig 4, total execution time of the same job is
reduced after the removal of faulty node. This happened
because native hadoop takes time to consider a node as a

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2854

failed node even if it is suffering from too many faults[14]. In
our experiment, we have a faulty node which stops working
for a while but it starts working again before it can be
considered as failure. This leads to re-assigning of tasks to
that node which is failing occasionally and which further
leads to failing and re-execution of tasks. As a result, total
execution time for the job is increased.

However, if the node had failed completely, it would have
taken much more time to complete the job because native
hadoop would have taken large amount of time to consider it
as a failure and then only its tasks would have been assigned
to another node. This delay would have added extra time to
the execution time of the job.

Chart -1: Comparison of execution time

Note that, not every fault reaches the stage of failure but it
still degrade the performance to some extent. Here, these
faults are detected and handled before they become any
major failure and have any serious impact on the job
completion efficiency of the cluster. And hence, the execution
time for the job is reduced.

5. CONCLUSION

In this paper, we proposed a mechanism to identify those
faulty nodes which are majorly responsible for the
degradation of the overall efficiency of the cluster. Some
nodes are referred as stragglers which increase the total
execution time of the job by lagging behind during the final
phase of job completion. If these nodes fall under the
specifications of our proposed mechanisms, then they will
also be detected as faulty nodes and will be removed from
the cluster to increase the overall performance.

Some faulty nodes show errors for repeated but short
intervals. These intervals are shorter than the timeout
interval of detecting failures. These faults needed to be
detected and handled because it is not practical to wait for
them to become any major failure which we seriously need
to be concerned with at later stage.

REFERENCES

[1] Dean, J., & Ghemawat, S. (2008). MapReduce: simplified

data processing on large clusters. Communications of
the ACM, 51(1), 107-113.

[2] T. White, “Hadoop: the definitive guide”, O’Reilly,
(2012).

[3] Sivaraman, E., & Manickachezian, R. (2014, March). High
performance and fault tolerant distributed file system
for big data storage and processing using hadoop. In
Intelligent Computing Applications (ICICA), 2014
International Conference on (pp. 32-36). IEEE.

[4] Shvachko, K., et al. 2010. The Hadoop Distributed File
System. IEEE.
http://storageconference.org/2010/Papers/MSST/Shva
chko.pdf.

[5] http://hadoop.apache.org

[6] Li, B., & Jain, R. (2013). Survey of Recent Research
Progress and Issues in Big Data. Washington University
in St. Louis, USA.

[7] Kwon, O., Lee, N., & Shin, B. (2014). Data quality
management, data usage experience and acquisition
intention of big data analytics. International Journal of
Information Management, 34(3), 387-394.

[8] Hu, P., & Dai, W. (2014). Enhancing fault tolerance based
on Hadoop cluster. International Journal of Database
Theory and Application, 7(1), 37-48.

[9] Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R. H., &
Stoica, I. (2008, December). Improving MapReduce
performance in heterogeneous environments. In Osdi
(Vol. 8, No. 4, p. 7).

[10] Borthakur, D., Gray, J., Sarma, J. S., Muthukkaruppan, K.,
Spiegelberg, N., Kuang, H., ... & Schmidt, R. (2011, June).
Apache Hadoop goes realtime at Facebook. In
Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data (pp. 1071-1080).
ACM.

[11] Chen, Q., Zhang, D., Guo, M., Deng, Q., & Guo, S. (2010,
June). Samr: A self-adaptive mapreduce scheduling
algorithm in heterogeneous environment. In Computer
and Information Technology (CIT), 2010 IEEE 10th
International Conference on (pp. 2736-2743). IEEE.

[12] Egwutuoha, I. P., Levy, D., Selic, B., & Chen, S. (2013). A
survey of fault tolerance mechanisms and
checkpoint/restart implementations for high
performance computing systems. The Journal of
Supercomputing, 65(3), 1302-1326..

[13] Goranson, C., Huang, X., Bevington, W., & Kang, J. (2014).
Data Visualization for Big Data.

[14] Katal, A., Wazid, M., & Goudar, R. H. (2013, August). Big
data: issues, challenges, tools and good practices. In
Contemporary Computing (IC3), 2013 Sixth
International Conference on (pp. 404-409). IEEE.

