
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3226

An Efficient Technique to Improve Resources Utilization for Hadoop

MapReduce in Heterogeneous system

Ahmed Qasim Mohammed1 , Rajesh Bharati2

1Department of Computer Engineering, Dr. D.Y. Patil Institute of Technology, Pune University, 2Department of

Computer Engineering, Dr. D.Y. Patil Institute of Technology, Pune University,

--***--
Abstract— Oughties witness releasing one of the most

reputed platform for processing and storing Big Data

which known by a strange name is Hadoop, mainly Hadoop
consist of two main application MapReduce for processing

data and Hadoop Distributed File System (HDFS) for
storing data, in fact even all the good features of Hadoop
there’s still some struggles specially with high speed of

data growth, therefor there is need to improve the
performance of the main two components to increase

Hadoop capability to treat data in efficient way. In this
paper our main focus is improving resources utilization in
MapReduce as a result of this there will be maximum usage

of resources and minimizing time for processing data so
we implemented different techniques on different level of
MapReduce, our work started by adding a classifier level

by using lightweight classification algorithm Support
Vector Machine (SVM)to overcome heterogeneity issues

that face Hadoop and generate problem to assign proper
job to proper slave node, by this technique we decreased
failed Tasks to approximately zero, second level will start

scheduling into phase level by using PRISM fine grained
algorithm here also we find using this algorithms

increased resources utilization and decreased job running
time by 10-30 % compared to existing schedulers, finally
we add a dynamic slot configuration algorithm to give

prepare slave node with proper required number of Map
and Reduce slots. In overall using improving on different

levels show improvement in performance of MapReduce
and decreased running time by 30% depending on
variation of Jobs and there requirements.

Keywords— Hadoop; MapReduce; Resources Utilization;
Phase-level; Classification Algorithm; Prism algorithm;
Heterogeneous System; Dynamic Slot Configuration;

1. INTRODUCTION

With the sunshine of third millennium the organization
submerged with a lot of data and data types start changing
day after day.

Due to uprising of new technologies (Social media, Smart
phone, IOT, etc.) there was more and more data which
known today as a BigData, according to some survey
reported that 90% of data was generated in last five years
also 4.1 Exabyte’s it was in 2014 and this number
increasing with incredible speed day by day.

For all this amount of data there was a need for an efficient
platform to handle the data with cost effective, here
Hadoop came to solve many of BigData problems with
efficient way and less time, Fig.1 shows Hadoop’s time line
till it became stable in 2009.

But before down to brass tack of Hadoop, we need to know
more about BigData[1, 10, 11], which is nothing only the
problems that cannot be solved by traditional tools and
there is characteristics that define BigData problems which
publically known as 3 V’s[2] of Big Data but actually they
are more than three and the most high effected V’s are
Volume which explain the problem of enormous amount of
data, Variety show the problem that there’s many types of
data, each required different tools to get served, Velocity
show the problem of handling the data in real time, and
last which is always neglected in literatures but it’s the
most important from our view it is Veracity where data
getting process must have meaningful for particular
problem, There’s more V such as validity and volatility.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3227

Fig -1: Hadoop’s time line till it became stable in 2009

When one or more of V’s appears so we have to know that
we are going to face BigData problems.

Because of BigData problems Hadoop came to provide
solutions for many of BigData problems by using a
traditional information technology tools, the main two are
MapReduce for processing data and HDFS[3,4] for storing
data.

Fig.2 shows dataflow in Hadoop and the main two
components of Hadoop, also it show the phases of
MapReduce.

Fig -2: Dataflow in Hadoop

But Hadoop in fact not only two components Hadoop is a
family that contain several applications most of them
adopted by Apache and the number of these application
regularly increasing last application is Apache Flink which
is use to process data functionally in real time, Also there’s
Ambari and Hue used for administration, Habse[8], Hive
and Sqoop[9] are applications dedicated to structured
data, Flume and Sqoop used for moving data into Hadoop
ecosystem, there’s Pig which is used with query language,
and many other applications for controlling workflow like
Oozie[5] and other which is used for analysis such as
Mahout and finally there’s Zookeepers which is simple
interface used to coordinate work of other application in
systematic way.

We took look on Hadoop from different angels so in next
sections we are going to focus on MapReduce as our paper
work is improving the utilization of MapReduce by using
different techniques on different level of it.

Our paper organized as follow. Section 2 will study
MapReduce architectures in details, in Section 3 we will
describe different literatures and provide more
information about going research to improve scheduling of
MR, while in Section 4 will discuss our implementation and
result and finally conclusion and future work in section 5.

2. MapReduce Architecture

MapReduce it is one of the most powerful tool to process
Big Data in parallel but it process rest data, originally
MapReduce [6] designed to process data in distributed
system by using simple technique of splitting data into

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3228

fragments and Map work to Map the input with key-value
pairs while Reduce will combine similar keys together to
produce one key- summation values, in practical
MapReduce it’s more complex than what we said and Fig.3
shown the flow of MapReduce in Hadoop with HDFS to
process data in fast and efficient way.

MapReduce consist from Map and Reduce but inside this
main two components there’s five phases, each phase
differ from the other with the resources consuming and
requirements.

Fig -3: MapReduce Data Flow

Map consist two phases Map-phase and Merge-Phase both
of them required CPU and memory resources to process
the fragments and produce key-value pair, while Map-
phase initiate key and assign value according to the job
requirements, Merge-phase will gather related keys
together to prepare for Reduce-task, actually sometimes
the output of Map-task will be much bigger than the input
for that there’s a simple phase similar to Reduce but it
work locally, this phase called combiner.
After Map-task done processing data there’s first phase of
Reduce-task which consume I/O [7] bandwidth to transfer
key-value pairs to second

Phase of Reduce-task which is known as Sort-Phase and its
work just to prepare the data in manner way that save
time for Reduce-phase when it will start combining key-
value pairs to produce one key many values and store
them into HDFS.
The mechanisms that happened inside MapReduce
inspired the author of PRISM algorithm to propose an

algorithm that able to switch between task-level and
phase-level and schedule task into phase-level with
requirements monitoring.
Also we have to mention that JobTracker/TaskTracker
architectures could only run on MapReduce.
In the end we have to mention the high scalability of MR
model.

3. Related Work

These are the following papers that are related to my
proposed as follows:-

Fig -4: Literatures

4. Discussion and Result

In this paper we did our improvements through three
levels as shown in Fig.5 System Architecture.
In the first level we used SVM (support vector machine)
which is an adaptive linear algorithm, does not overload
our system.
In this level SVM fetch the job from jobs pool and
classify it according to job requirements and node features

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3229

into non-executable which will back to first pool to be
classified one more time with the node that have highest
resources if it get executable label it will continue into
node local pool otherwise administrator will interrupt to
solve the problem which is really rare and it will be solved
by upgrade the cluster with sufficient resources to serve
such job smoothly in
Future in this level we overcome the problem with
heterogynous system .
Executable jobs will be gathering into local pool specific
for only this node and they will get schedule by PRISM
algorithm into phase level to be process in parallel with
another job processed in advance phase.
In fact it’s not that easy to process this entire job in parallel
due to phase dependences, for example Shuffle phase will
always wait for Merge phase to complete transferring data
from Map task to Reduce task.
But in overall these two level shows very pleasant result
while we process Job contain different task of counting
words, finding specific word, and count appearance of
specific word.
Where there was no any task failed as showing in result
and the time much faster compared to use existing fair
schedulers in current system.
Finally while we classified task approved executable task
requirements will directly sent to Task Tracker and saved
in queue when this task get served will find already
required Map slot and Reduce slot configured according to
job need.

Fig -5: System Architecture

We have to mention that Map task can only processed in
Map slot and same happened with Reduce task can only
processed in Reduce slot after Map task complete
processing.
Following figure show the dataflow in our system.

Fig -6: shows the dataflow in our system

For our experiments we configured a cluster of 3 nodes
working on centos operating system with stable version of
Hadoop on each node.
Each node has different resources to create a
heterogynous system by configuring them on virtual
machine.

 Master node (JobTracker)
Hard Disk 50 GB
Memory 6 GB
Processors 6 core

 Slave node1 (TaskTracker)

Hard Disk 50 GB
Memory 5 GB
Processors 3 core

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3230

 Slave node2 (TaskTracker)
Hard Disk 50 GB
Memory 4 GB
Processors 2 core

And we run a word count job contain different task
(counting words, finding specific word, and count
appearance of specific word).
Result shown in Fig.7 where there was no any failed
Task and blue line shows more Jobs submitted and
completed processing with in less time.

Fig -7: Results

5. Conclusion and Future Work

In this paper we are satisfied with result that we get from
implementing different improvement in the architecture of
MapReduce, by using adaptive algorithms on different
level that can learn and improve they work with time and
we overcome problem of heterogeneous system by using
SVM algorithm.

But we still believe there’s more to do in to improve
MapReduce by understanding Job requirements and
profile them in proper way to satisfy phase scheduling
requirements.

For Future work we are going to go more deep with
studying new coming application that work with Hadoop
to process data in real time.

Also we are going to deploy Nash Equilibrium rule into
Hadoop’s slave node to make them smarter to take
decision of choosing task by them self.

References

[1] T. White, ‘‘How the MapReduce works,’’ in Hadoop: The
Definitive Guide, 3rd ed. Tokyo, Japan: O’Reilly Inc., 2012.

[2] I. Lahmer and N. Zhang, ‘‘MapReduce: MR model
abstraction for future security study,’’ in Proc. 7th Int.
Conf. Secur. Inf. Netw., 2014, pp. 392–398.

[3] C. Lam, ‘‘Introducing Hadoop, and managing Hadoop,’’
in Hadoop in Action. Greenwich, U.K.: Manning
Publications Co, 2010.

[4] P. Zikopoulos, C. Eaton, D. Deroos, T. Deutsch, and G.
Lapis, Understanding Big Data: Analytics for Enterprise
Class Hadoop and Streaming Data. New

York, NY, USA: McGraw-Hill, 2012.

[5] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data
processing on large clusters,’’ Commun. ACM, vol. 51, no. 1,
pp. 107–113, 2008.

[6] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S.
Shenker, and I. Stoica. Dominant resource fairness: fair
allocation of multiple resource types. In USENIX
Symposium on Networked Systems Design and
Implementation (NSDI), 2011.

[7] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S.
Shenker, and I. Stoica. Dominant resource fairness: fair
allocation of multiple resource types. In USENIX
Symposium on Networked Systems Design and
Implementation (NSDI), 2011.

[8] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F.
Cetin, and S. Babu. Starfish: A self-tuning system for big
data analytics. In Conference on Innovative Data Systems
Research (CIDR11), 2011.

[9] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, and K.
Talwar. Quincy: fair scheduling for distributed computing
clusters. In ACM SIGOPS Symposium on Operating Systems
Principles (SOSP), pages 261–276, 2009.

[10] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang. Multi-
resource allocation: Flexible tradeoffs in a unifying
framework. In IEEE International Conference on Computer
Communications (INFOCOM), pages 1206–1214, 2012.

[11] J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley, M.
Steinder, J. Torres, and E. Ayguade. Resource-Aware
Adaptive ´ Scheduling for MapReduce Clusters.
ACM/IFIP/USENIX Middleware, pages 187–207, 2011

