
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 08 | Aug -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1446

Application to Quickly and Safely Store and Recover Credit Card’s
Information, using Tokenization and Following the PCI Standards

Daniela De Vivo 1, Eric Gamess 2

1 School of Computer Science, Central University of Venezuela, Caracas, Venezuela
2 Department of Mathematical, Computing, and Information Sciences, Jacksonville State University, AL, USA

---***---

Abstract - Nowadays, with the ubiquity of information and
communication technologies, most of the companies are
stepping toward offering their products and services online
(using applications or websites), because it is the easiest and
fastest way to do it, and they can reach clients all over the
world. In general, the payment of these products and services
is realized online by customers by entering the information of
their bank card on a website. When payments have to be done
fast or when it is very repetitive, introducing the payment
information of the card can be unpractical and can slow down
the whole process. To tackle this issue, we propose a vault
application that allows the storage and recovery of the
payment information by using tokens and that follows the
Payment Card Industry (PCI) standards. The main objective of
this application is to save, in a safe location, the payment
information of customers, and allow them to recover that
information, with a unique safe identifier, at the moment of
the payment. This application will relieve customers to
repetitively introduce their card information every time they
make a purchase, and will speed up the payment process.

Key Words: Web Service, Online Payment System, Security,
ISO 8583, JSON, XML, PCI DSS, Vault Payment.

1. INTRODUCTION

Companies are constantly looking for raising their sales, by
increasing their number of customers. Hence, most of the
companies has developed web sites and applications to sale
their services and products online. Online sales lead to
online payments, where customers sometime have a short
amount of time to introduce their cards information or they
have to do it for every transaction. This process can be
stressful and repetitive, and it forces customers to have their
cards with them all the time. Therefore, a possible solution is
to save the information of the card and to recover it when
needed. However, it is not that simple, this kind of data is
very sensitive and it must be stored in a safe place and only
used by verified and authorized applications.

In this paper, we introduce in detail our solution for this
problem, a vault application that follows the PCI standards
[1][2] and saves the information in a safe server. The card’s
information will be only introduced once and will be
associated with a customer. Later, the information will be
recovered when the customer needs to realize a payment
but, to keep a good security level, the sensitive information
will not be send to the commerce’s application, that is, it will
only be sent to the payment channel. The vault application

communicates with the commerce´s application through ISO
8583 [3], JSON [4], or XML [5] requests/responses, which
make it compatible with the majority of actual commercial
systems. For the communication between our system and
the payment system, we use JSON. Our goal was to develop
an accessible, adaptable, and multiplatform application.

The rest of the paper is structured as follows. We present
related work in Section 2. We briefly discuss encryption in
Section 3; a way to force confidentiality in data storage and
transmission. In Section 4, tokenization and authentication
are introduced; while the tools, languages, and standards
that were used in the implementation of the application are
described in Section 5. We explain the architecture and
development process followed to build our application in
Section 6. To certify our application, we discuss the
validation tests that we run again our system and the results
obtained in Section 7. Finally, Section 8 concludes the paper
and gives directions for future work in this area.

2. RELATED WORK

Worldwide, important companies of payments have done
similar work. However, some of these companies do not offer
their services in Venezuela or have solutions that do not
satisfy all the requirements. The Visa Token Service (VTS) [6]
is a security technology that replaces the account information
with a digital identifier, a token. This token allows merchants
and wallet providers to keep the account information without
risk, so they can provide their customers safe ways to shop
online. Visa Tokens also offer the Visa Digital Enablement
Program (VDEP) [7] that allows merchants to use payment
solutions with VTS through payment methods such as: (1)
Android Pay, (2) Samsung Pay, and (3) Visa Checkout. For
token provisioning, a consumer enrolls his/her Visa account
with a digital payment provider (mostly, mobile wallets), this
provider will request a token from VTS and Visa might share
this token with the issuing bank. For token usage, the digital
payment provider passes the token as part of an
authorization request, Visa receives the token and sends it
along with the account or card information to the issuer, the
issuer accepts or declines the request and sends its response
back to Visa, that forwards the response to the provider.

As Visa, MasterCard has also its tokenization system.
MasterCard offers two solutions: (1) Payment Tokenization
and (2) Gateway Services Payment and Card Tokenization
[8]. Both have the same goal, transforming sensitive
information into tokens. In the first solution, MasterCard
associates a unique transaction reference once a successful

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 08 | Aug -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1447

transaction is done, and then this authorization reference is
used in place of the card number, and the merchant only
needs to capture the card security code (CVV) and the
expiration date. Every reference has a pre-set expiration date
of 13 months. On the other hand, in Card Tokenization, a
merchant will receive a token in response to an authorization
request. Tokens will be used in place of the cards number,
and the merchant will only have to ask for the card security
code and expiration date. Each token has a pre-set expiration
date of 48 months.

The previous solutions have some issues. First of all,
tokenization done by Visa or MasterCard forces every
transaction to pass through one additional step going to their
system and waiting for them to make the detokenization.
Another problem could be that companies like Visa and
MasterCard might not accept all payment services. These kind
of solution, when token is associated to the card company, are
more likely to be used in digital wallets.

3. ENCRYPTION

Encryption is the transformation of a message, regardless of
its linguistic structure, to make it incomprehensible. In an
encryption scheme, the information or message to protect,
referred to as plaintext, is encrypted using an encryption
algorithm, generating cipher text that can only be read or
understood if decrypted. Encryption can be used for data that
is stored in disks or data that must be sent through an
insecure network. In the former case, the data is encrypted
before being stored and the authorized parties must decrypt
the data when accessing them. In the later case, the data must
be encrypted by the sender of the message and decrypt by the
receiver.

Message encryption enforces confidentiality. However, other
techniques must be used together with encryption to achieve
integrity, authentication, and non-repudiation of messages,
for example digital signature or verification of a message
authentication code (MAC). Integrity is a way to guarantee
that the information has not been modified, that is, any
alteration of the original information will be detected.
Authentication is a mechanism of determining whether
someone or something is, in fact, who or what it is claimed to
be. Many times, authentication system is based on credentials
(e.g., username and password) provided are compared to
those of a database of authorized users. If the credentials
match, the process is completed and the user is
authenticated. Typically, non-repudiation is a process in
which a party cannot deny something, for example in a
communication system, the sending of a message that it
originated.

The most important part of encryption is choosing the right
way to do it. Encryption can be divided in the following 3
main types [9]: symmetric encryption, or secret key
encryption, uses the same key to encrypt and decrypt, and the
authorized parts of the communication must agree on the key
that will be used; asymmetric encryption, or public key
encryption, where each party has 2 keys, one public key that

is distributed to any recipient and is used to encrypt, and one
private key that is used for decryption and must be kept safe
by the owner so nobody can access it; finally, hybrid
encryption, where public key encryption is used to share a
private key for a session, and symmetric encryption is used
during that session.

There are many symmetric encryption algorithms that have
been proposed by the community. In a communication
system where sensitive data are stored and transmitted, it is
crucial to make a good selection. Despite the large number of
available algorithms, 3 algorithms are being wildly accepted
worldwide: DES [10] (Data Encryption Standard), 3DES [11]
(Triple DES) and AES [12] (Advanced Encryption Standard).
AES is the most used for sensitive payment information. AES
is a standard created in 2001 by Rijmen-Daemen from
Belgium, and was proposed as an alternative to DES
(nowadays susceptible to brute-force attacks since its
effective key length is 56 bits) and 3DES (that generates
speed problems). This algorithm can be used with keys of
128, 192, or 256 bits, and handles blocks of 128 bits of data. It
is simple but resistant to diverse attacks. Its operation
consists of: processing the data in blocks of 4 columns of 4
bytes (this is called the state matrix), has 10, 12 or 14 rounds
and uses the operator “exclusive or” (XOR) to merge the
columns between the key and the state array.

Finally, to ensure that security conditions are the best,
systems must follow the Payment Card Industry (PCI)
standards. PCI DSS (Payment Card Industry Data Security
Standard) is a standard for data security in the payment card
industry. It emerges as a need to standardize security
standards in the processing, storage, and transmission of
payment transactions involving cards, and was developed by
a committee composed of the most important credit and
debit card companies: PCI SCC (Payment Card Industry
Security Standards Council). Companies that process, store,
or transmit card data must meet the standard or risk losing
their permits to process credit and debit cards, face rigorous
audits, or pay fines. Merchants and providers of credit and
debit card services must validate their compliance with the
standard periodically. The current version specifies 12
requirements that are called “control objectives” and must be
enforced by solutions that are PCI certified.

4. AUTHENTICATION AND TOKENIZATION

Authentication is the process of verifying the identity of the
participants in a communication, and it is generally done
when there is a request of connection [13]. It is simply a way
to ensure that the users are who they say they are. This
process works hand in hand with encryption since they
complement each other: encryption helps authentication by
ensuring that messages sent between sender and receiver
were not interfered with or understood by third parties,
while authentication helps encryption by ensuring that the
source and destination of protected messages are who they
claim to be.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 08 | Aug -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1448

Authentication can be done based on 3 different factors: (1)
based on something known, the most used of all, makes
authentication using credentials that the user knows, for
example, a username and password; (2) based on something
owned, using something that user has, for example a card;
and (3) biometric based, user authenticates trough a physical
characteristic or unconscious gesture.

Tokenization is the process where an account or card number
is replaced by a unique identifier called token [14]. Each
token is associated with a card or account number, so there is
also a detokenization process that consists of retrieving the
original number of the card or account, by supplying the
token. The security of this system is based on the complexity
of obtaining the actual number of the card or account if the
only information known is the token. The origin and
motivation of tokenization is based on the fact that the
information of the cards/accounts and their respective
holders cannot be exposed, leading to very complex systems
where it is required to take care of many aspects of security.
Storing a token is a safe process, since the token alone,
without the key, does not reveal any sensitive information,
making it much easier to store information and comply with
the PCI standards.

The storage of multiple tokenized credit cards is called card
vault. A digital credit card vault is a system where tokenized
information is stored for each card. The vaults must comply
with various security mechanisms, including PCI, when
handling sensitive information. The most important security
mechanism is that the complete information of a card can
only be obtained through a token from a valid and reliable
applicant.

5. TOOLS, LANGUAGES, AND STANDARDS FOR THE
APPLICATION

In this section, we introduce the tools, languages, and
standards for the message format that are usually used in this
kind of transactions and those that were used for our
application.

Online payment transactions use 3 different formats for
messages: ISO 8583, XML, and JSON. ISO 8583 is a standard
from the International Organization for Standardization (ISO)
for financial transactions that involve debit or credit cards.
This standard defines a message format and a communication
flow so that remote systems can exchange these transaction
requests and replies. An XML (Extensible Markup Language)
[18] message is a hierarchy of tags that represent the
structured information on the web (all types of documents),
so that this information can be stored, transmitted,
processed, visualized, and printed, by diverse types of
applications and devices. JSON (JavaScript Object Notation) is
a light data exchange format that is easy to read, write,
generate, and interpret, by both humans and computers. JSON
is composed of two main structures: (1) a parameter-value
combination, representing an object or record; and (2) an

ordered list of values, which is known in most languages as
an array.

For a complex system, like a vault application, many tools and
languages have to be used. In the following subsections, we
present the most popular ones.

5.1. Java

Java is a general-purpose, concurrent, class-based, and object-
oriented language [15]. It is a strongly typed static language,
that is, each variable must be assigned a data type and that
data type can only be used, like another type, by a conversion.

5.2 Java EE (Enterprise Edition)

Java EE is a platform that streamlines and facilitates the quick
development of Java-based enterprise and robust
applications. It aims to provide developers with a set of APIs
in order to reduce the time and complexity of development
and improve application performance [16].

5.3 MySQL

MySQL is an open-source relational database management
system (RDBMS) [17]. This system is known in the
community for having high performance and availability,
which makes it a good option to be integrated in applications
where many transactions are made on the database and short
response times are needed.

5.4 The javax.crypto Packet

Java provides a very useful packet called javax.crypto that has
a set of classes that facilitate the development of any
cryptographic scheme.

5.5 Java Database Connectivity (JDBC)

JDBC is an API for the Java programming language, which
defines access to relational databases from Java applications.
It provides methods to query, update, and remove data in a
relational database. In can be used to access databases
managed by the major RDBMSs, such as MySQL, PostgreSQL,
and Oracle.

5.6 RESTful Services

REST (Representational State Transfer) refers to a set of
principles that forms a style of web architecture. In this
architectural style, data and functionality are considered
resources and accessed through URI (Uniform Resource
Identifiers) [18].

5.7 HTTP

HTTP (Hypertext Transfer Protocol) is a stateless protocol for
the transfer of data and information in the Internet network
and is known mainly for performing communication between
web servers and web browsers [19]. In the HTTP protocol,
the POST method is mostly used to send data filled into a
form in a web browser, from an application to a server. In this
method, the parameters of the request are not stored
anywhere, and are sent in the body of the request.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 08 | Aug -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1449

6. ARCHITECTURE AND DEVELOPMENT OF OUR
SOLUTION

Our solution for the mentioned problem was to develop a
vault application that could be used by different merchants
and customers. To reach that objective we define the
following guidelines: the application data is divided into
different vaults, a vault is associated with one merchant;
tokens are associated to customers and to merchants; only
registered merchants have access to the application; a

merchant can only see the data of his own vault. The
application must be modular, since this helps in having a
better control of security levels and it will be much easier to
fix bugs. Therefore, we decided to make a system composed
by different web services with their own functions. All these
different services look like one for external applications and
payment systems. Services will be connected to a centralized
database. The architecture of the application is shown in Fig.
1.

JSON

JSON

JSON

JSON

XML

ISO 8583

JDBC

Authentication
Service

Tokenization
Service

Translation
Service

Payment
System

Client
Application

Central
DB

DB

Web Server

Fig -1: Architecture of the Proposed Solution

The natural flow of our application would be the following:
the administrator of a commerce (by using the client
application) registers it through the authentication service,
and it is returned to him that the registration was successful,
the ID of the vault, and token of the merchant. The token of
the merchant is stored in the local database (the commerce
database). A customer of the commerce creates a payment
option with the associated vault by using the client
application and by entering its credit card information (name
of customer, credit card number, expiration date, and CVV
number). The client application sends the required
information to the authentication service that generates a
token through the tokenization service. As a response, the
web service returns the token to the client application, where
it is stored locally in the commerce database. From now on,
the client application has the token (which gives some
information regarding the card of the customer) as a payment
option for this customer. To make a payment, the customer
uses the client application and selects the card, that invokes
the authentication service, which is in charge of performing
validations, detokenization and the sending of the
information of the card to the payment system; The payment
system takes a decision about approving or not the payment
and returns the result of the transaction to the authentication
service, that finally forwards it to the client application.

The central database is a very important part of this system.
In our architecture, it is allocated in a remote safe server and
it communicates with the web services by using JDBC [20].
The databases stored in this server are encrypted, so if a
hacker makes a copy of them, he will not be able to decrypt

the information. The database has a set of tables that allow
the secure storage of information of customer cards (random
key, token, and additional information), vaults (ID),
merchants (random key and name), and associations
between customer cards, merchants and vaults.

The application was developed in Java, and we created
RESTful web services that communicate between each other
through JSON messages. As mentioned previously, the core of
the architecture is based on three main web services, that we
describe next:

Tokenization Service: this service is intended to generate a
token associated with a customer card or a merchant. Its
structure must be quite simple, and to maintain a high level of
security, it only has access to the database to insert the
record of a new generated tokens. This service has a main
class that handles requests, a class that does the encryption, a
service configuration class, and a class that handles
connection to the database using the JDBC API. For the
development of this service, we used packets such as:
javax.crypto.*, javax.ws.rs.*, org.json.*, among others. In the
vault system, this service will be invoked by the
authentication service. However, a separate route to it was
created as an alternative, to allow future expansion of the
application, so it can be reused in another project or for
another purpose.

In the case of the tokenization of a customer card, the service
is invoked by the authentication service by sending a JSON
message that contains the customer card’s data (name of
customer, credit card number, expiration date, and CVV

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 08 | Aug -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1450

number) to the tokenization service. Since a random key is
required for the generation of the token, we use the Java
javax.crypto.KeyGenerator, specifying the type of encryption
algorithm to be used (which is AES in our application), the
encoding to be used (which is UTF-8 in our application), and
the size of the key (we chose 128 bits in our application), to
generate the key. This key will only be generated the first
time a customer card is inserted and associated with a
merchant, and it will be stored in the central database by the
tokenization service.

Subsequently, the tokenization service will take the card
number and divide it into 3 parts which are: the first 4 digits,
the 8 intermediaries, and the last 4. An important point is that
since it is a credit card vault only, it is assumed that the card
number will always have 16 digits. The 8 intermediate digits
will be encrypted using the methods of the encryption class
and later concatenated again with the initial 4 digits and 4
final digits, thus generating the token. It is worth to clarify
that the first 4 digits of a card are well known and permit to
identify the bank issuer. Hence, it is not necessary to encrypt
them. Also, for customers that register several cards with the
same merchant, the last four digits of their cards will be the
method that they will use to identify each card. Hence, the 4
last digits are not encrypted for this reason. The token is also
stored in the central database by the tokenization service.
Note that the 8 intermediate digits that were encrypted,
become 32 alphanumeric digits after encryption.

After the generation of the token for the customer card, the
tokenization service will use the previous generated random
key to encrypt the rest of the data of the customer card (name
of customer, expiration date, and CVV number). The resulting
information will also be stored in the central database by the
tokenization service. Finally, the tokenization service ends its
work by returning the generated token in JSON format to the
authentication service.

In the case of the tokenization of a merchant, a random key is
also generated and used to encrypt the commerce name with
the same encryption mechanism of the customer cards. Both,
the random key and the merchant name are stored in the
central database by the tokenization service. The created
token is sent back to the authentication service that will
forward it to the client application, where it will be stored in
the local database for future use.

Authentication Service: this web service contains all the
logic and administration of the vault system itself. It is
responsible for interacting directly with the client
applications and receiving their requests. It is subdivided into
two large parts.

The first part of this service consists of the administration of
the information of merchants that are associated to the vault
system, so they can be created, updated, eliminated, or
associated to the vaults. In the approach of the solution, it
was assumed that each merchant will have its particular
vault, however, it was left open the option that a vault can be
associated with more than one merchants.

The second part of this service is focused on the
administration of customer cards. In this part, there are two
options, the first is to invoke the tokenization service for the
tokenization of the information of a customer card and the
second is to retrieve the data of a customer card (plain text),
identified by a received token, and send these data to the
payment system.

Translation Service: this third and last web service has as
main objective to handle the interaction between the vault
system and client applications that do not support the JSON
format messages. As mentioned in Section 5, the most
common formats for this type of transaction are ISO 8583,
JSON, and XML. Hence, this service will receive requests in
ISO 8583 or XML format, and will translate them into JSON
format, that can be understood by the authentication service
as shown in Fig. 1. The objective of the translation service is
to make our vault system compatible with the bigger number
of possible client applications.

Additionally, since security in this system is a key point, it
was covered by three main strategies and a lot of validations.
First, the environment where the system was located has its
own security mechanisms and access control, so sensitive
information is in a more secure environment. Second, the
design of this system is made to be used with SSL certificates,
which means that instead of using the HTTP protocol for the
exchange of information, HTTPS [28] is used. Third, when a
merchant associates its client application with the vault
system, a merchant token is generated and stored in the local
database of the client application. For the authentication of
the merchant by the vault application, this token has to be
sent by the client application in the headers of all HTTP
requests. When a service receives a request from a client
application, it will decrypt the received merchant token with
its associated random key (stored in the central database),
and if the result matches the name of the merchant (also
stored in the central database), access will be allowed,
otherwise it will be denied. It was decided to use a fixed
merchant token and not one per session since the sessions
are very short in this system. In almost all cases, sessions will
be transactions of short times and little data to exchange.

7. VALIDATION OF THE PROPOSED SYSTEM

The validation of the proposed application must be done at
several levels. For example, the PCI requirements [29] were
achieved since: (1) the system is on a secure, protected and
isolated server, (2) the proposed application architecture and
flow, and (3) the security measures implemented.

Another aspect that guarantees a higher level of security in
this system, is the fact that each time a customer card is
associated with a vault, the token will be different. That is, it
is guaranteed that the same customer card in different vaults
will generate different card tokens.

We performed simple merchant authentication tests that
consisted in requesting services through the authentication
service with a modified (partially or completely modified) or

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 08 | Aug -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1451

missing merchant token, and in all cases, access was denied.
Similarly, we did simple customer card authentication tests,
and all the illegal accesses were denied.

At the code level, some additional restrictions were
developed, almost all as an extra step for verification and
access to data. For example, we always verify that the
merchant has a vault before allowing it to generate or
retrieve a customer card token. Also, when a customer card
token is retrieved, the system validates that the merchant
that requests it is associated with the vault where it is stored.

Finally, we did some tests about the response times of the
application. For the registration and management functions
of cards and merchants, the response times are practically
immediate. Longer waiting times can only be generated if
there is a problem in the device making the request to the
vault system or a failure in the network through which the
request is made. On the other hand, for the recovery of a
token and the realization of a payment, the waiting times can
be much more variable since they not only depend on the
devices, the network and the system, but also on the response
time from the bank. Bank transactions usually have a
response time lower than 1 second; however, there may be
failures or delays in transmission, both at the time of the
request or the reply. To measure an average of the system
response time for a payment, tests were performed using
simulated payment systems offered by two different
Venezuelan national banks: Banesco and Banplus. It is worth
to mention that these simulated payment systems are
provided by the banks to certified system payments for
developing and testing purposes before they put a new
developed application in service. For the tests, a universe of
500 transaction was taken that consisted in four types of
scenarios: (1) Banesco payment system using Banesco cards,
(2) Banesco payment system using Banplus cards, (3)
Banplus payment system using Banplus cards, and (4)
Banplus payment system using Banesco cards. Fig. 2 depicts
the results obtained. As expected, we can observe that
transactions made with a bank using their own credit cards
are faster, since the bank can take a decision about approving
or not the payment without contacting another bank.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Banesco Payment

System +

Banesco Cards

Banesco Payment

System +

Banplus Cards

Banplus Payment

System +

Banplus Cards

Banplus Payment

System +

Banesco Cards

Ti
m

e
 (S

e
co

n
d

s)

Fig -2: Response Times in Different Scenarios

Although the system will be running in a server that has
access control that will be in charge of limiting the number of
requests that it receives per second, we decided to make
some stress tests. For that, we use the same simulated
payment system offered by Banesco and Banplus, and made
several payment requests per second, to observe how the
response times is affected when the vault system receives
multiple requests in a short period of time. Seven types of
tests were performed to study the variations of the response
times when the system is loaded. From the first to the
seventh type of test, the number of requests per second were:
1, 25, 100, 200, 300, 400, and 500, respectively. Unlike the
previous experiments, we did not enforce the selection of a
particular bank for these experiments. That is, we used
customer cards from both banks (Banesco and Banplus), and
the system payment will choose the bank autonomously. Fig.
3 depicts the results obtained. As the number of concurrent
requests increases, so does the response time of each request.
However, in all cases, the requests for the transactions were
answered satisfactorily, with an acceptable response time.

0.382

0.611

0.791
0.812

0.884
0.935

0.991

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7

Ti
m

e
 (S

e
co

n
d

s)

Fig -3: Response Time when Making Concurrent Requests

8. CONCLUSIONS AND FUTURE WORK

The need of merchants to adapt to technological advances is
increasing, so they can accommodate to new tendencies such
as offering their products and services via the web and
mobile applications. To support these new tendencies of the
commerce, a large number of electronic payment systems
has emerged. However, at the moment of payments, the
information of the credit card is entered manually and
repetitively when the customer is making several purchases,
which can be stressful and unpractical. For this reason, in
this research work, we proposed a new application to
achieve a safe and efficient payment system. For each
merchant, our system creates a vault where the information
of the customer cards is kept. For each card, a card token is
generated and used as a replacement of the card number.
The complete information of a customer card (name of
customer, credit card number, expiration date, and CVV
number) can be rapidly and safely recovered through this

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 08 | Aug -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1452

token. Also, our solution is compatible with most of the
existing platforms since it accepts petitions in ISO 8583,
JSON, and XML format.

As future work, we propose to add the management of debit
cards and bank accounts to our vault system. Also, we are
interested in linking more payment options to our
application. Finally, we also want to investigate the
feasibility of making an application for digital wallet using
card tokenization in Venezuela.

ACKNOWLEDGEMENT

We want to thank professor Antonio Russoniello, from the
School of Computer Science of the Central University of
Venezuela, for all his suggestions and feedbacks during the
development of this research project.

REFERENCES

[1] PCI DSS – Documentation. Requirements and Security

Assessment Procedures. April 2016.

[2] PCI Security Standards Council. PCI Security
https://www.pcisecuritystandards.org/pci_security

[3] Internation Organization for Standardization. ISO 8583-
1:2003. Financial Transaction Card Originated Messages
– Interchange Message Specifications – Part 1: Messages,
Data Elements and Code Values. June 2003.

[4] L. Bassett. Introduction to JavaScript Object Notation: A
To-the-Point Guide to JSON. O'Reilly Media. 1st edition.
August 2015.

[5] PG Wizard Books, XML Crash Course: Step by Step Guide
to Mastering XML Programming. CreateSpace
Independent Publishing Platform. March 2017.

[6] Visa Token Service https://developer.visa.com/
products/vts.

[7] VDEP http://www.visa.com.mx/asociandose-con-
nosotros/tecnologia-de-pago/visa-token-service.html.

[8] Tokenization http://www.mastercard.com/gateway/
implementation_guides/Tokenization.html.

[9] W. Stalling, Cryptography and Network Security.
Pearson. 7th edition. March 2016.

[10] FIPS PUB 46-3. Data Encryption Standard. May 2005.

[11] J. Pattrick. Information Security and Criptology. June
2017.

[12] FIPS PUB 197. Advanced Encryption Standard.
November 2001.

[13] R. Smith. Authentication: From Passwords to Public
Keys. Addison-Wesley Professional. 1st edition. October
2001.

[14] Scoping SIG, Tokenization Taskforce PCI Security
Standards Council. PCI DSS Tokenization Guidelines.
Version 2.0. August 2011.

[15] H. Schildt. Java: The Complete Reference. McGraw-Hill
Education. 9th edition. April 2014.

[16] D. Coward. Java EE 7: The Big Picture. McGraw-Hill
Education. 1st edition. October 2014.

[17] M. Maclaughlin. MySQL Workbench: Data Modeling &
Development. McGraw-Hill Education. 1st edition. April
2013.

[18] L. Richardson and S. Ruby. RESTful Web Services.
O’Reilly. 1st edition. May 2007.

[19] D. Gourley, B. Totty, M. Sayer, A. Aggarwal, and S. Reddy.
HTTP: The Definitive Guide. 1st edition. Octobre 2004.

[20] M. Brzustowicz. Data Science with Java: Practical
Methods for Scientists and Engineers. 1st edition. June
2017.

