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Abstract - In this paper, we study existence of solution of 
quadratic integral equations 

 ( )   (   )   ( )∫ (   ) (     )   

 

 

  ,   -         ( ) 

by using Tychonoff fixed point theorem. Also existence 
maximal and minimal solution for equation ( ). 
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1. Introduction  

 
In fields, physics and chemistry, they can be use quadratic 
integral equations (QIEs) in their applications, for 
examples: the theory of radiative transfer, traffic theory, 
kinetic theory of gases and neutron transport and in many 
other phenomena. 
 
The paper ([1-10]) studied quadratic integral equations. 
Thus, we study solvability of the following quadratic 

integral equation: 

 ( )   (   ) 

  ( )∫ (   ) (     )           ,   -         ( )

 

 

 

2. Preliminaries  

We need in our work the following fixed point theorems 
and definitions 
 
Definition 1[11]: A set     is said to be convex if, 
   ,   - and            (   )     
 
If       and   ,   -  then    (   )  is said to be a 
convex combination of   and  . 
 
Simply says that   is a convex set if any combination of 
every two elements of   is also in  . 
 

 Theorem 2 (Tychonoff Fixed Point Theorem) [12]: 
suppose B is a complete, locally convex linear space and S 
is a closed convex subset of B. Let a mapping        be 
continuous and  ( )   . If the closure of  ( ) is compact, 
then T has a fixed point. 
 
Theorem 3 (Arzel ̀ -Ascoli Theorem) [13]: Let   be a 
compact metric space and  ( ) the Banach space of real or 
complex valued continuous functions normed by 
  

‖ ‖     
   
| ( )| 

If    *  + is a sequence in  ( ) such that    is uniformly 
bounded and equicontinuous, then  ̅ is compact.   
 
To prove the existence of continuous solution for quadratic 
integral equation( ), we let   ,   -,      ,   - be the 
space of Lebesgue integrable function   and   be the set of 
real numbers.  

   
3. Existence of solution 

We study the existence of at least one solution of the 
integral equation ( ) under the following assumptions: 
 
( ) -             is continuous   and there a exist 
function 
 
         Such that | (   )|   (| |)             
(  )-    ,   -  ,   -     is continuous for two variables t 
and s such that: 

| (   )|                  for all    ,   - 

Where   is constant (   ). 

(   )             is bounded function and satisfies 
Carath ́odory condition, Also there exist continuous  

function           satisfying  

| (     ( ))|   ( ) ( ) for all     ,   - and      

(  ) There exists a constant   ,   - such that 
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  ( )∫ ( )    

 

 

 

And       *| (      )   (      )|      ,   -+ 

Now we can formulate the main theorem  

Theorem 4: if the assumptions ( ) and (   ) are satisfied, 
then the quadratic integral equation of Volterra type has at 
least one solution    ,   -. 

Proof: Let    be set of all continuous function on interval 
,   - denoted by  ,   -, it is a complete locally convex 
linear space that has been proved in [12], and define the 
set   by  

  *    | ( )|   +   ,   - 

Where       ( )     

Clearly   is nonempty, bounded and closed, but we will 
prove that the set   convex. 

Let         and   ,   -, then we have  

‖    (   )  ‖   ‖  ‖  (   )‖  ‖ 

                                                           (   )  

                                                               

                                                          

Then      (   )       which means that   is convex 

set. 

To show that        let    , then  

| ( )|  | (   )   ( )∫ (   ) (     )    

 

 

| 

     | (   )|  | ( )| ∫ | (   )|| (     )|     
 

 
 

      | (   )|  | ( )| ∫ | (   )| ( ) ( )  
 

 
 

       ( )     ( ) ∫  ( )  
 

 
 

       ( )     

         

This means that   is closed and by similar steps we can 
prove      

Consider the operator  : 

  ( )   (   ) 

  ( )∫ (   ) (     )              ,   -        

 

 

 

|  ( )|   

| (   )   ( ) ∫  (   ) (     )    
 

 
|  

                 ( )     

                   

Then      implies to      

Now, Let               and |     |     then  

|  (  )    (  )|   

| (    )   (  ) ∫  (    ) (      )    
  
 

  (    )  

 (  ) ∫  (    ) (      )    
  
 

|  

 | (    )   (  ) ∫  (    ) (      )    
  
 

         

  (    )   (  ) ∫  (    ) (      )    
  
 

  

  (    )   (  ) ∫  (    ) (      )      
  
 

  

  (    )   (  ) ∫  (    ) (      )      
  
 

  

  (    )   (  ) ∫  (    ) (      )      
  
 

  

  (    )   (  ) ∫  (    ) (      )      
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  (    )   (  ) ∫  (    ) (      )      
  
 

  

  (    )   (  ) ∫  (    ) (      )      
  
 

  

  (    )   (  ) ∫  (    ) (      )      
  
 

  

  (    )   (  ) ∫  (    ) (      )    
  
 

|  

 

| (    )   (    )|  

| (  )   (  )| ∫ | (    )|| (      )|  
  
 

  

 | (  )| ∫ | (    )|| (      )|  
  
  

  

 | (  )| ∫ | (    )   (    )|| (      )|  
  
 

  

 | (  )| ∫ | (    )|| (      )   (      )|  
  
 

  

 We have  

 

   | (  )   (  )|  ( ) ∫  ( )
  
 

   ∫ | (      )|  
  
  

 

    ( ) ∫  ( )
  
 

    

          as      .  

This means that the function    is equi-continuous 
on,   -. By using Arzela-Ascoli theorem, we can say that 
   is compact. 

Tychonoff fixed point theorem is satisfied all its conditions, 
then the operator   has at least one fixed point. This 
completes the proof. 

4 Maximal and minimal solution  

Definition 5: [14] let  ( ) be a solution of equation ( ) then 
 ( ) is said to be a maximal solution of equation  ( ) if 
every solution of ( ) on ,   - satisfies the inequality  

 ( )   ( )     

A minimal solution  ( ) can be defined in a similar way by 
reversing the above inequality i.e    ( )   ( )      
 

The following lemma important to prove the existence of 
maximal and minimal solution of equation ( ). 

Lemma 6: suppose that  (   ) satisfies the assumption ( ) 
of theorem 1 and let  ( )  ( ) be continuous function on 
,   - satisfying  

 ( )   (   )   ( )∫ (   ) (     )         

 

 

 

 ( )   (   )   ( )∫ (   ) (     )      

 

 

 

And one of them is strict. 

Let  (   ) is nondecreasing function in   then 

 ( )   ( )               ,   -                              ( )  

Proof: Let conclusion ( ) be false, then there exists    such 
that  

 (  )   (  )                                           ( )  

And  

 ( )   ( )                                     ,   - 

From the monotonicity of   in  , we get  

 (  )   (    )   (  )∫  (    ) (      )  

  

 

 

  (    )   (  )∫  (    ) (      )  

  

 

 

That implies to  

 (  )   (  ) 

This is contradiction with ( ), then  

 ( )   ( ).  

Next, we prove the existence maximal and minimal 
solution of quadratic integral equation ( ). So, we have the 
next theorem. 

Theorem: let all conditions of theorem 1 be satisfied and if 
 (   ) is nondecreasing functions in  , then there exist 
maximal and minimal solutions of equation ( ). 
Proof: for the existence of the maximal solution 

 let     be given and  

  (      )   (      )     

    (    )   (    )    

 



       International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395-0056 

           Volume: 04 Issue: 08 | Aug -2017                      www.irjet.net                                                               p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |        Page 1975 
 

From equation (1) we obtain that: 

  ( )  ( (    )   ) 

   ( )∫  (   )( (      )   )      

 

 

 

   (    )    ( ) ∫  (   )  (      )       ( )
 

 
  

Clearly the functions   (    )  and   (      )  satisfy 

assumptions ( ), (   )  then equation ( ) has a continuous 

solution on  ( ). 

Let    and    be such that           then  

 

   ( )     (     )     ( ) ∫  (   )   (       )    
 

 
  

  ( (     )    )     ( ) ∫  (   )( (       )  
 

 

  )                ( )  

 

Also 

   ( )     (     )     ( )∫  (   )   (       )    

 

 

 

 ( (     )    ) 

    ( )∫ (   )( (       )    )             ( )  

 

 

 

   ( )  ( (     )    ) 

    ( )∫ (   )( (       )    )             ( )

 

 

 

 

Applying lemma 6 to ( ) and ( ) we have  

   ( )     ( )                 ,   - 

According to the previous of the theorem 1, we conclude 
that equation ( )  is equi-continuous and uniformly 
bounded, through it we use the Arzela-Ascoli theorem so, 
there exists a decreasing sequence    such that     as 
   , and          ( ) exists uniformly in   and we 

denote this limit by  ( ). From the continuity of the 
functions     and    in the second argument, we get 
 

  (      )   (     ( ))             as     

  (    )   (   ( ))                    as     

and        

( )           ( )  

 (   ( ))   ( ) ∫  (   ) (     ( ))        
 

 
 

which implies that  ( ) is a solution of equation ( ). 
Now, we can prove that  ( ) is the maximal solution of 

quadratic integral equation ( )  

Let  ( ) be any solution of equation ( ), then 

 

 ( )   

 (   )   ( )∫  (   ) (     )                ( )

 

 

 

and  

  ( )  ( (    )   ) 

   ( )∫  (   )( (      )   )   

 

 

 

  ( )   

 (    )    ( )∫ (   ) (      )          ( )  

 

 

 

by Lemma 6 and equations ( )  ( ) we get  

 ( )    ( )                ,   - 

From the uniqueness of the maximal solution (see [14] and 
[15]), it is clear that   ( ) tends to  ( ) uniformly in ,   - 
as    . 
 
In the same manner we can prove the existence of the 
minimal solution.  
 

4. Conclusion: 

 Equation ( ) has a maximal and minimal solution after we 
proved the existence of at least one solution by using 
Tychonoff Fixed Point Theorem under 4 assumptions.     
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