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Abstract - In this paper we propose and investigate a 
novel end-to-end method for automatically generating short 
message responses, called Smart Reply. It generates 
semantically diverse suggestions that can be used as 
complete message responses with just one tap on wearable. 
The system is currently used in Inbox by Message and is 
responsible for assisting with 10% of all wearable responses. 
It is designed to work at very high throughput and process 
hundreds of millions of messages daily. The system exploits 
state-of-the-art, large-scale deep learning. 
 
We describe the architecture of the system as well as the 
challenges that we faced while building it, like response 
diversity and scalability. We also introduce a new method for 
semantic clustering of user-generated content that requires 
only a modest amount of explicitly labeled data. 
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1. INTRODUCTION 

      Message is one of the most popular modes of 
communication on the Web. Despite the recent increase in 
usage of social networks, message continues to be the 
primary medium for billions of users across the world to 
connect and share information [2]. With the rapid increase 
in message overload, it has become increasingly 
challenging for users to process and respond to incoming 
messages. It can be especially time-consuming to type 
message replies on a wearable device.  

      In Computer Science, the field of AI research defines 
itself as the study of “intelligent agents”: any device that 
perceives its environment and takes actions that maximize 
its chance of success at some goal. The term "artificial 
intelligence" is applied when a machine mimics "cognitive" 
functions that humans associate with other human minds, 
such as "learning" and "problem solving". As machines 
become increasingly capable, mental facilities once thought 
to require intelligence are removed from the definition.  

      Wearable and the Internet of Things (IoT) may give the 
impression that it’s all about the sensors, hardware, 
communication middleware, network and data but the real 
value is in insights. In this article, we explore artificial 
intelligence (AI) and machine learning that are becoming 
indispensable tools for insights. 

Artificial Intelligence: The field of artificial 
intelligence is the study and design of intelligent agents 
able to perform tasks that require human intelligence, such 
as visual perception, speech recognition, and decision-
making. In order to pass the Turing test, intelligence must 
be able to reason, represent knowledge, plan, learn, 
communicate in natural language and integrate all these 
skills towards a common goal. 

      Machine Learning: The machine learning is the subfield 
that learns and adapts automatically through experience. It 
focuses on prediction, based on properties learned from 
the training data. The origin of machine learning can be 
traced back to the development of neural network model 
and later to the decision tree method. Supervised and 
unsupervised learning algorithms are used to predict the 
outcome based on the data. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig -1 The Components of Smart Reply 
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   To address this problem, we leverage the sequence-to-
sequence learning framework [23], which uses long short-
term memory networks (LSTMs) [10] to predict sequences 
of text. Consistent with the approach of the Neural 
Conversation Model [24], our input sequence is an 
incoming message and our output distribution is over the 
space of possible replies. Training this framework on a 
large corpus of conversation data produces a fully 
generative model that can produce a response to any 
sequence of input text. As Neural Conversion model [24] 
can be used to decode coherent, possible responses. 

      We have faced several challenges not considered in 
previous work: 

 Response quality  

 Utility 

 Scalability 

 Privacy   

      To tackle these challenges, we propose Smart Reply a 
novel method and system for automated message response 
suggestion. Smart Reply Consists of the following 
components, also shown in Fig-1. 

 Response selection: At the core of our system, an 
LSTM neural network [8] processes an incoming 
message, and then uses it to predict the most 
likely responses. LSTM computation can be 
expensive, so we improve scalability by ending 
only the approximate best responses.  

 Response set generation: To deliver high 
response quality, we only select responses from 
response space which is generated in using a 
semi-supervised graph learning approach.  

 Diversity: After ending a set of most likely 
responses from the LSTM, we would like to choose 
a small set to show to the users that maximize the 
total utility. We found that enforcing diverse 
semantic intents is critical to making the 
suggestions useful.  

 Triggering model: The triggering model is the 
entry point of Smart Reply system. It is 
responsible for iterating messages that are bad 
candidates for suggesting responses. 

     The combination of these components is a novel end-to-
end method for generating short, complete responses to 
messages, going beyond previous works. For response 
selection it exploits state-of-the-art deep learning models 
trained on billions of words, and for response set 
generation it introduces a new semi-supervised method for 
semantic understanding of user-generated content. 

      Moreover, since it directly addresses all four challenges 
mentioned above, it has been successfully deployed in 
Inbox. Currently, the Smart Reply system is responsible for 

assisting with 10% of message replies for Inbox on 
wearable. 

2. RELATED WORK 

      As we consider related work, we note that building an 
automated system to suggest message responses is not a 
task for an existing literature or benchmarks, this is a 
standard machine learning problem to which existing 
algorithms can be readily applied. The work related to two 
of our core components which we will review here. 

      Predicting full responses: Full response prediction 
was initially attempted in Social media [16], which 
approached the problem from the perspective of machine 
translation. Our approach is similar, but rather than using 
SMT, we use the neural network translation model 
proposed in “sequence-to-sequence learning”. 

      Sequence-to-sequence learning: which makes use of 
long short-term memory networks (LSTMs) [10] to predict 
sequences of text, was originally applied to Machine 
Translation but has since seen success in other domains 
such as image caption[25] and speech recognition [6] 

      Other recent works have also applied recurrent neural 
net-works (RNNs) or LSTMs to full response prediction 
[21], [20], [19], [24]. In [21] the authors rely on having an 
SMT system to generate n-best lists, while [19] and [24], 
like this work, develop fully generative models. Our 
approach is most similar to the Neural Conversation Model 
[24], which uses sequence-to-sequence learning to model 
tech support chats and movie subtitles. 

      The primary difference of our work is that it was 
deployed in a production setting, which raised the 
challenges of response quality, utility, scalability, and 
privacy. These challenges were not considered in any of 
these related works and led to our novel solutions 
explained in the rest of this paper. 

      Furthermore, in this work we approach a different 
domain than [21], [20], [19], and [24], which primarily 
focus on social media and movie dialogues. In both of those 
domains it can be acceptable to provide a response that is 
merely related or on-topic. Message, on the other hand, 
frequently expresses a request or intent which must be 
addressed in the target response space. Our approach here 
builds on the Expander graph learning approach [15], since 
it scales well to both large data and large output sizes. 
While Expander was originally proposed for knowledge 
expansion and classification tasks [26], our work is the rest 
to use it to discover semantic intent clusters from user-
generated content. 

     Other graph-based semi-supervised learning techniques 
have been explored in the past for more traditional 
classification problems [27][5]. Other related works have 
explored tasks involving semantic classification [12] or 
identifying word-level intents [17] targeted towards Web 
search queries and other forums [7]. However, the problem 
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settings and tasks them-selves are significantly different 
from what is addressed in our work. 

      Finally, we note that Smart Reply is the rest work to 
address these tasks together and solve them in a single 
end-to-end, deployable system. 

3. SELECTING RESPONSES 

       The fundamental task of the Smart Reply system is to 
find the most likely response given an original message. In 
other words, given original message o and the set of all 
possible responses R, we would like to find: 

r = argmax P (rjo) 

r2R 

      To find this response, we will construct a model that can 
score responses and then find the highest scoring 
response. We will next describe how the model is 
formulated, trained, and used for inference. Then we will 
discuss the core challenges of bringing this model to 
produce high quality suggestions on a large scale. 

3.1 LSTM Model 

       Since we are scoring one sequence of tokens r, 
conditional on another sequence of tokens o, this problem 
is a natural t for sequence-to-sequence learning [23]. The 
model itself is an LSTM. The input is the tokens of the 
original message P(rjo) :::; ong, and the output is the 
conditional probability distribution of the sequence of 
response tokens given the input: 

P (r1; :::; rmjo1; :::; on) 

      As in sequence-to-sequence learning [23], this 
distribution can be factorized as: 

ym 
P (r1; :::; rmjo1; :::; on) =   P (rijo1; :::; on; r1; :::; ri  1) 

i=1 

      First, the sequence of original message tokens, including 
a special end-of-message token on, are read in, such that 
the LSTM's hidden state encodes a vector representation of 
the whole message. Then, given this hidden state, a softmax 
output is computed and interpreted as P (r1jo1; :::; on), or 
the probability distribution for the rest response token. As 
response tokens are fed in, the softmax at each time step t 
is interpreted as P (rtjo1; :::; on; r1; :::; rt 1). Given the 
factorization above, these softmax can be used to compute 
P (r1; :::; rmjo1; :::; on). 

      Training Given a large corpus of messages, the training 
objective is to maximize the log probability of observed 
responses, given their respective originals: 

X 
log P (r1; :::; rmjo1; :::; on) 

(o;r) 

      We train against this objective using stochastic gradient 

descent with AdaGrad [8]. Ten epochs are run over a 
message corpus which will be described in Section 7.1. Due 
to the size of the corpus, training is run in a distributed 
fashion using the TensorFlow library [1]. 

      Both our input and output vocabularies consist of the 
most frequent English words in our training data after pre-
processing steps.. In addition to the standard LSTM 
formulation, we found that the addition of a recurrent 
projection layer [18] substantially improved both the 
quality of the converged model and the time to converge. 
We also found that gradient clipping was essential to stable 
training. These distributions can be used in a variety of 
ways. 

 To draw a random sample from the response 
distribution P (r1; :::; rmjo1; :::; on). This can be 
done by sampling one token at each time step and 
feeding it back into the model.  

 To determine the most likely response, given the 
original message. This can be done greedily by 
taking the most likely token at each time step and 
feeding it back in. A less greedy strategy is to use a 
beam search, i.e., take the top b tokens and feed 
them in, then retain the b best response softmax 
and repeat the procedure. 

 To determine the likelihood of a specific response 
candidate. This can be done by feeding in each 
token of the candidate and using the softmax 
output to get the likelihood of the next candidate 
token.  

Table - 1 Generated response examples. 

Query Top generated responses 

Hi, I thought it would be I can do Tuesday. 

great for us to sit down I can do Wednesday. 

and chat. I am free How about Tuesday? 

Tuesday and 
Wednesday. I can do Tuesday! 

Can you do either of I can do Tuesday. What 

those days? time works for you? 

 I can do Wednesday! 

Thanks! I can do Tuesday or 

 Wednesday. 

{Alice How about Wednesday? 

 I can do Wednesday. What 

 time works for you? 

 I can do either. 
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3.2 Challenges  

       As described thus far, the model can generate coherent 
and plausible responses given an incoming message. 
However, several key challenges arise when bringing this 
model into production. 

      Given that the model is trained on a corpus of real 
messages, we have to account for the possibility that the 
most probable response is not necessarily a high quality 
response. Even a response that occurs frequently in our 
corpus may not be appropriate to surface back to users.  

      While restricting the model vocabulary might address 
simple cases such as profanity and spelling errors, it would 
not be sufficient to capture the wide variability. 

      We further improve the utility of suggestions by rest 
passing each message through a triggering model that 
determines whether suggestions should be generated at 
all. This reduces the likelihood that we show suggestions 
when they would not be used anyway. 

      Scalability Our model needs to be deployed in a 
production setting and cannot introduce latency to the 
process of message delivery, so scalability is critical. 

      Our search is conducted as follows. First, the elements 
of R are organized into a tree. Then, we conduct a left-to-
right beam search, but only retain hypotheses that appear 
in the tree. This search process has complexity O(bl) for 
beam size b and maximum response length l. Both b and l 
are typically in the range of 10-30, so this method 
dramatically reduces the time to find the top responses 
and is a critical element of making this system deployable. 
In terms of quality, we find that, although this search only 
approximates the best responses in R, its results are very 
similar to what we would get by scoring and ranking all r 2 
R, even for small b. At b = 128, for example, the top scoring 
response found by this process matches the true top 
scoring response 99% of the time. Results for various beam 
sizes are shown in Fig- 2. 

       Privacy Note that all message data was encrypted. 
Engineers could only inspect aggregated statistics on 
anonym zed sentences that occurred across many users 
and did not identify any user. Also, only frequent words are 
retained. As a result, verifying model's quality and 
debugging is more complex. 

      For a sample of messages we compute the frequency 
which the best candidate found by a beam search over R 
matches the best candidate found by exhaustively scoring 
all members of R. We compare various beam sizes. At a 
beam size of 16, these two methods find the same best 
response 93% of the time. 

 

Beam size 

               

 

 

 

 

 

 

 

Fig -2 Effectiveness of searching the response space R 

4. RESPONSE SET GENERATION 

       Two of the core challenges we face when building the 
end to end automated response system are response 
quality and utility. Response quality comes from 
suggesting “high quality" responses that deliver a positive 
user experience. Utility comes from ensuring that we don't 
suggest multiple responses that capture the same intent. 
We can consider these two challenges jointly. 

      We first need to be a target response space that 
comprises high quality messages which can be surfaced as 
suggestions. The goal here is to generate a structured 
response set that effectively captures various intents 
conveyed by people in natural language conversations. The 
target response space should capture both variability in 
language and intents. The result is used in two ways 
downstream (a) To be a response space for scoring and 
selecting suggestions using the model described in Section 
3, and (b) promote diversity among chosen suggestions as 
discussed in Section 5. 
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Fig-3 Semantic clustering of response messages 

     We construct a response set using only the most 
frequent anonymized sentences aggregated from the 
preprocessed data.  

4.1 Canonicalizing message responses 

       The First step is to automatically generate a set of 
canonical responses messages that capture the variability 
in language. We parse each sentence using a dependency 
parser and use its syntactic structure to generate a 
canonicalized representation. Words that are modifiers or 
unattached to head words are ignored. 

4.2 Semantic intent clustering 

        In the next step, we want to partition all response 
messages into “semantic" clusters where a cluster 
represents meaningful response intent. All messages 
within a cluster share the same semantic meaning but may 
appear very different. 

      In this step helps to automatically digest the entire 
information present in frequent responses into a coherent 
set of semantic clusters. If we were to build a semantic 
intent prediction model for this purpose, we would need 
access to a large corpus of sentences annotated with their 
corresponding semantic intents. However, this is neither 
readily available for our task nor at this scale. Moreover, 
unlike typical machine learning classification tasks, the 
semantic intent space cannot fully need a priori as shown 
in Figure 3. 

4.3 Graph construction 

      We start with a few manually clusters sampled from the 
top frequent messages. A small number of example 
responses are added as “seeds" for each cluster. We then 
construct a base graph with frequent response messages as 
nodes (VR). For each response message, we further extract 
a set of lexical features and add these as “feature" nodes 
(VF ) to the same graph. Edges are created between a pair 
of nodes (u, v) where u 2 VR and v 2 VF if v belongs to the 
feature set for response u. We follow the same process and  

create nodes for the manually labeled examples VL. We 
make an observation that in some cases an incoming 
original message could potentially be treated as a response 
to another message depending on the context. 

4.4 Semi supervised learning 

      The constructed graph captures relationships between 
similar canonicalized responses via the feature nodes. 
Next, we learn a semantic labeling for all response nodes 
by propagating semantic intent information from the 
manually labeled examples through the graph.  

     We treat this as a semi-supervised learning problem and 
use the distributed Expander [15] framework for 
optimization. The learning framework is scalable and 
naturally suited for semi-supervised graph propagation 
tasks such as the semantic clustering problem described 
here. We minimize the following objective function for 
response nodes in the graph. 

     The output from Expander is a learned distribution of 
semantic labels for every node in the graph. We assign the 
top scoring output label as the semantic intent for the 
node; labels with low scores are iterated out. 

      To discover new clusters which are not covered by the 
labeled examples, we run the semi-supervised learning 
algorithm in repeated phases. In the First phase, we run 
the label propagation algorithm for 5 iterations. We then x 
the cluster assignment, randomly sample 100 new 
responses from the remaining unlabeled nodes in the 
graph. The sampled nodes are treated as potential new 
clusters and labeled with their canonicalized 
representation. We return label propagation with the new 
labeled set of clusters and repeat this procedure until 
convergence. 

5.  SUGGESTION DIVERSITY 

      The LSTM processes an incoming message and then 
selects the best responses from the target response set 
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created using the method described in Section 4. Recall 
that we follow this by some light normalization to positive 
responses that may be too general to be valuable to the 
user. The effect of this normalization can be seen by 
comparing columns 1 and 2 of Table 2. 

      Next, we need to choose a small number of options to 
show the user. A straight-forward approach would be to 
just choose the N top responses and present them to the 
user. However, as column 2 of Table 2 shows, these 
responses tend to be very similar. 

      The likelihood of at least one response being useful is 
greatest when the response options are not redundant, so 
it would be wasteful to present the user with three 
variations of, say, I'll be there. The job of the diversity 
component is to select a more varied set of suggestions 
using two strategies: omitting redundant responses and 
enforcing negative or positive responses. 

5.1 Omitting Redundant Responses  

      This strategy assumes that the user should never see 
two responses of the same intent. It can be thought of as a 
cluster of responses that have a common communication 
purpose. In Smart reply, every target response is 
associated in exactly one intents are based on automatic 
clustering followed by human validation as discussed in 
Section 4. 

       The actual diversity strategy is simple: the top 
responses are iterated over in the order of decreasing 
score. Each response is added to the list of suggestions, 
unless its intent is already covered by a response on the 
suggestion list. The resulting list contains only the highest 
scored representative of each intent, and these 
representatives are ordered by decreasing score. 

5.2 Enforcing Negatives and Positives  

      We have observed that the LSTM has a strong tendency 
towards producing positive responses, whereas negative 
responses typically receive low scores. We believe that this 
tendency affects the style of message conversations: 
positive replies may be more common, and where negative 
responses are appropriate, users may prefer a less direct 
wording. 

      Nevertheless, we think that it is important to or 
negative suggestions in order to give the user a real choice.  

      A positive response is one which is clearly amative. In 
order to the negative response, a second LSTM pass is 
performed. In this second pass, the search is restricted to 
only the negative responses in the target set. This is 
necessary since the top responses produced in the pass 
may not contain any negatives. 

      Even though missing negatives are more common, there 
are some cases in which an incoming message triggers 
exclusively negative responses. In this situation, we 
employ an analogous strategy for enforcing a positive 

response. The Final set of top scoring responses is then 
presented to the user as suggestions. 

6. TRIGGERING  

      The triggering module is the entry point of the Smart 
Reply system. It is responsible for altering messages that 
are bad candidates for suggesting responses. This 
includes messages for which short replies are not 
appropriate as well as messages for which no reply is 
necessary at all. 

      The module is applied to every incoming message just 
after the preprocessing step. If the decision is negative, 
we wish the execution and do not show any suggestions. 
Currently, the system decides to produce a Smart Reply 
for roughly 11% of messages, so this process vastly 
reduces the number of useless suggestions seen by the 
users. An additional benefit is to decrease the number of 
calls to the more expensive LSTM inference, which 
translates into smaller infrastructure cost. 

      There are two main requirements for the design of the 
triggering component. First, it has to be good enough to 
grow out cases where the response is not expected. Note 
that this is a very different goal than just scoring a set of 
responses. For instance, we could propose several valid 
replies to a newsletter containing a sentence "Where do 
you want to go today?". Second, it has to be fast: it 
processes hundreds of millions of messages daily, so we 
aim to process each message within milliseconds. 

      The main part of the triggering component is a feed 
forward neural network which produces a probability 
score for every incoming message. If the score is above 
some threshold, we trigger and run the LSTM scoring. We 
have adopted this approach because feed forward 
networks have repeatedly shown to perform linear 
models such as SVM or linear regression on various NLP 
tasks. 

Table -2 Different response rankings for the message 
Can you join tomorrow's meeting?" 

Unnormalized 
Responses  Normalized Responses 

Yes, I'll be there.  Sure, I'll be there. 

Yes, I will be there.  Yes, I can. 

I'll be there.  Yes, I can be there. 

Yes, I can.  Yes, I'll be there. 

What time?  Sure, I can be there. 

I'll be there!  Yeah, I can. 

I will be there.  Yeah, I'll be there. 

Sure, I'll be there.  Sure, I can. 

Yes, I can be there.  Yes. I can. 

Yes!  Yes, I will be there. 
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Normalized Negative Responses 

Sorry, I won't be able to make it tomorrow. 

Unfortunately I can't. 

Sorry, I won't be able to join you. 

Sorry, I can't make it tomorrow. 

No, I can't. 

Sorry, I won't be able to make it today. 

Sorry, I can't. 

I will not be available tomorrow. 

I won't be available tomorrow. 

Unfortunately, I can't. 

Final Suggestions 

Sure, I'll be there. 

Yes, I can. 

Sorry, I won't be able to make it tomorrow. 

6.1 Data and Features 

      The data set described in Section 7.1, we create a 
training set that consists of pairs (o, y), where o is an 
incoming message and y is true or false is a Boolean label, 
which is true if the message had a response and false 
otherwise. For the positive class, we consider only 
messages that were replied to from a wearable device, 
while for negative we use a subset of all messages. Our 
goal is to model P (y = true j o), the probability that 
message o will have a response on wearable. 

      After preprocessing, we extract content features  from 
the message body, subject and headers. We also use 
various social signals like whether the sender is in 
recipient's address book, whether the sender is in 
recipient's social network and whether the recipient 
responded in the past to this sender. 

6.2 Network Architecture and Training  

      We use a feed forward multilayer perception with an 
embedding layer and three fully connected hidden layers. 
We use feature hashing to bucket rare words that are not 
present in the vocabulary. The embeddings are separate 
for each sparse feature type. Then, all sparse feature 
embeddings are concatenated with each other and with 
the vector of defense features. 

      We use Rectified [13] activation function for non-
linearity between layers, the dropout [22] layer is applied 
after hidden layer. We train the model using large scale 
machine learning adaptive sub gradient [8] optimization 
algorithm with logistic loss cost function. 

7. EVALUATION AND RESULTS  

      In this section, we describe the training and test data 
for all messages using various preprocessing steps. Then, 
we evaluate different components of the Smart Reply 
system and present overall usage statistics 

7.1 Data 

      To generate the training data for all Smart Reply models 
from sampled accounts, we extracted all pairs of an 
incoming message and the user's response to that message. 
For training the triggering model, all sampled number of 
incoming personal messages which the user didn't reply to. 
At the beginning of Smart Reply pipeline data is 
preprocessed in the following way: 

 Language detection: The language of the 
message is identified and non-English messages 
are discarded. 

 Tokenization: Subject and message body are 
broken into words and punctuation marks. 

 Sentence segmentation: Sentences boundaries 
are identified in the message body. 

 Normalization: Infrequent words and entities 
like personal names, URLs, message addresses, 
phone numbers etc. are replaced by special 
tokens. 

 Quotation removal: Quoted original messages 
and forwarded messages are removed. 

 Salutation/Close removal: Salutations like Hi 
John and closes such as Best regards, Mary are 
removed. 

After the preprocessing steps, the size of the 
training set is 238 million messages, which include 153 
million messages that have no response. 

7.2 Results 

      The most important end-to-end metric for our system 
is the fraction of messages for which it was used. This is 
currently 10% of all wearable replies. Below we describe 
in more detail evaluation starts for different components 
of the system.  

7.2.1 Triggering results  

      In order to evaluate the triggering model, we split the 
data set into train (80%) and test (20%) such that all test 
messages are delivered after train messages. This is to 
ensure that the test conditions are similar to the Final 
scenario. We use a set of standard binary classifier 
metrics: precision, recall and the area under the ROC 
curve. The AUC of the triggering model is 0:854. We also 
compute the fraction of triggered messages in the 
deployed system, which is 11%. We observed that it may 
be beneficial to slightly over-trigger, since the cost of 
presenting a suggestion, even if it is not used, is quite low 

7.2.2 Response selection results Perplexity. 

      A model with lower perplexity assigns higher 
likelihood to the test responses, so we expect it to be 
better at predicting responses. Intuitively, a perplexity 
equal to k means that when the model predicts the next 
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word, there are on average k likely candidates. In 
particular, for the ideal scenario of perplexity equal to 1, 
we always know exactly what should be the next word. 
The perplexity on a set of N test samples is computed 
using the following formula: 

Pr = exp( 

  
1N 

 ln(P(r1 ; :::;rmjo1 ; :::; on))) 

 

W  
Xi=1     

     ^  

  Where W is the total number of words in all N samples, P    
is the learned distribution and ri, oi are the i-th response 
and original message. Note that in the equation above 
only response terms are factored into Pr. The perplexity 
of the Smart Reply LSTM is 17:0. By comparison, an n-
grams language model with S.M Katz et.al [11] and a 
maximum order of 5 has a perplexity of 31:4 on the same 
data response ranking. 

      While perplexity is a quality indicator, it does not 
actually measure performance at the scoring task we are 
ultimately interested in. In particular, it does not take into 
account the constraint of choosing a response in R. 
Therefore we also evaluate the model on a response 
ranking task: for each of N test message pairs (o; r) for 
which r 2 R, we compute s = P (rjo) and 8i xi = P (wijo), 
where wi is the i-th element of R. Then we sort the set R = 
fs; x1; : : : ; xN g in descending order. Finally, we de ne 
ranki = argminj(RjjRj = s). Put simply, we are ending the 
rank of the actual response with respect to all elements      
in R 

Table -3 Response ranking 

Model  Precision@10  Precision@20 MRR  

Random  5:58e  4  1:12e  3 3:64e  4  

Frequency  0:321   0:368 0:155  

Multiclass-BOW  0:345   0:425 0:197  

Smart Reply  0:483   0:579 0:267  

 

Using this value, we can compute the Mean Reciprocal 

Rank: 

MRR = 1/N N 1/ranki 

                                          Xi 

 

     Additionally we can compute, for a given value of K it is 
computed as the number of cases for which target 
response r was within the top K responses that were 
ranked by the model. 

      We compare the Smart Reply response selection 
model to three baselines on the same ranking task. The 
Random baseline ranks R randomly. The Frequency 
baseline ranks them in order of their frequency in the 
training corpus. This baseline captures the extent to 
which we can simply suggest highly frequent responses 
without regard for the contents of the original message. 
The Multiclass-BOW baseline ranks R using a feed 
forward neural network whose input is the original 
message, represented with bag of words features, and 
whose output is a distribution over the elements of R(a 
softmax). 

      As shown in Table 3, the Smart Reply LSTM 
significantly improves on the Frequency baseline, 
demonstrating that conditioning on the original message 
is effective; the model successfully extracts information 
from the original message and uses it to rank responses 
more accurately. 

      It also significantly outperforms the Multiclass-BOW 
base line. There are a few possible explanations for this. 
First, the recurrent architecture allows the model to learn 
more sophisticated language understanding than bag of 
words features. Second, when we pose this as a multiclass 
prediction problem, we can only train on messages whose 
response is in R, a small fraction of our data. On the other 
hand, the sequence-to-sequence framework allows us to 
take advantage of all data in our corpus: the model can 
learn a lot about original-response relationships even 
when the response does not appear in R exactly. 

      Note that an added disadvantage of the multiclass 
formulation is that it tightly couples the training of the 
model to the construction of R. We expect R to grow over 
time, given the incredible diversity with which people 
communicate. While a simpler application such as chat 
might only need a small number of possible responses, 
we nd that for message we will need a tremendous 
number of possible suggestions to really address users' 
needs. 

7.2.3 Diversity results 

      We justify the need for both the diversity component 
and a sizable response space R by reporting statistics 
around unique suggestions and clusters in Table 4. The 
Smart Re-ply system generates daily 12:9k unique 
suggestions that belong to 376 unique semantic clusters. 
Out of those, people decide to use 4; 115, or 31:9% of, 
unique suggestions and 313, or 83:2% of, unique clusters. 
Note, however, that many suggestions are never seen, as 
column 2 shows: the user may not open a message, use 
the web interface instead of wearable or just not scroll 
down to the bottom of the message. Also, only one of the 
three displayed suggestions will be selected by the user. 
These statistics demonstrate the need to go well beyond a 
simple system with 5 or 10 canned responses. 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 04 Issue: 08 | Aug -2017                     www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |   Page 2120 
 

Table -4 Unique cluster/suggestions usage per day 

 Daily Count Seen Used 

Unique Clusters 376 97:1% 83:2% 

Unique Suggestions 12:9k 78% 31:9% 

     The distribution of the rank for suggested responses 
and the distribution of suggested clusters. The tail of the 
cluster distribution is long, which explains the poor 
performance of Frequency baseline described in Section 
7.2.2. 

      We also measured how Smart Reply suggestions are 
used based on their location on a screen. Recall that 
Smart Reply always presents 3 suggestions, where they 
are suggestion is the top one. We observed that, out of all 
used suggestions, 45% were from the 1st position, 35% 
from the 2nd position and 20% from the 3rd position. 
Since usually the third position is used for diverse 
responses, we conclude that the diversity component is 
crucial for the system quality. 

      Finally, we measured the impact of enforcing a diverse 
set of responses (e.g., by not showing two responses from 
the same semantic cluster) on user engagement: when we 
completely disabled the diversity component and simply 
suggested the three suggestions with the highest scores, 
the click-through rate decreased by roughly 7:5% 
relative. 

8.  CONCLUSIONS 

      We presented Smart Reply, a novel end-to-end system 
for automatically generating short, complete message 
responses. The core of the system is a state-of-the-art 
deep LSTM model that can predict full responses, given 
an incoming message. To successfully deploy this system 
in Inbox by Message, we addressed several challenges: 

      We increase the total utility of our chosen combination 
of suggestions by enforcing diversity among them, and 
altering track for which suggestions would not be useful. 

      Our clearest metric of success is the fact that 10% of 
mo-bile replies in Inbox are now composed with 
assistance from the Smart Reply system. Furthermore, we 
have designed the system in such a way that it is easily 
extendable to address additional user needs; for instance, 
the architecture of our core response scoring model is 
language agnostic, therefore accommodates extension to 
other languages in addition to English 
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