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1. INTRODUCTION  
Induction motors (IM) are the most widely used 

in domestic, commercial and various industrial 
applications. Especially, the squirrel cage IM is 
characterized by its simplicity, robustness and low cost, 
making it more attractive and hence captured a leading 
place in industrial and agricultural sectors. As millions of 
such motors are in use in various sectors, they consume a 
considerable percentage of overall produced electrical 
energy. The ever mounting pressure of oil crisis and the 
need for energy conservation necessitate designing the 
IMs with increased levels of efficiency. Motor 
manufacturers primarily focus their attention on the 
minimization of production and material cost, whereas 
users are concerned about the operating cost of the 
machine over its lifetime. The efficiency of existing motor 
designs can be improved by addition of active materials or 
by employing more expensive technology that has an 
impact on the manufacturing cost. Besides, the rising cost 
of the raw materials necessitates the design to include 
minimization of the weight/cost of the motor, which may 
attempt to increase the loss, leading to partially conflicting 
objectives.  

 Another important objective i.e temperature rise 
is mainly based on the insulation life . According to IEEE 

standard 101 , (T2) the expected life of winding insulation 

is doubled for every 10 C  reduction in operating 

temperature. Ventilation holes are provided in the rotor-
yoke to prevent the temperature rise. It is obvious that 
minimization of temperature rise will indirectly reduce 
the heat loss and improves the efficiency. The efficiency of 
the IM are typically considered in tailoring the objective 
function and optimized through appropriate combination 
of the design parameters. The optimal design of IM (ODIM) 
is so complicated that it is still a combination of art and 
science. There are many geometrical parameters and their 
relationships connected with motor specifications, which 
are in general nonlinear. (Mehmet Cunkas, 2010).  

Over the years, in addition to statistical methods 
(Han and Shapiro 1967) and the Monte Carlo technique 
(Anderson 1967), several mathematical programming 
techniques, which provides a means for finding the 
minimum or maximum of a function of several variables 
under a prescribed set of constraints, have been applied in 
solving the IM design problems. These techniques such as 
nonlinear programming, (Ramarathnamet al. 1971), 
Lagrangian relaxation method (Gyeorye Lee et al. 2013), 
direct and indirect search methods (Nagrialet al. 1979), 
Hooks and Jeeves method (Faizet al. 2001), 
Rosenbrock’smethod (Bharadwajet al. 1979-a), Powell’s 
method (Ramarathnamet al.  1973), finite element method 
(Parkinet al. 1993) and sequential unconstrained 
minimization technique (Bharadwajet al. 1979-b) are most 
cumbersome and time consuming. Besides a few of them 
requires derivatives and exhibits poor convergence 
properties due to approximations in the derivative 
calculations.  

Apart from the above methods, another class of 
numerical techniques called evolutionary search 
algorithms such as  simulated annealing (Bhuvaneswariet 
al. 2005;Kannanet al. 2010),  genetic algorithm (GA) 
(SatyajitSamaddaret al. 2013;Prakashet al. 2014-a),   
evolutionary algorithm (Jan PawelWieczoreket al. 1998),  
evolutionary strategy (Kim MK et al. 1998), particle 
swarm optimization (PSO) (Thanga Raj et al. 
2008;Sakthivelet al. 2011) and harmony search 
optimization (Prakashet al. 2014-b) have been widely 
applied in solving the IM design problems. Having in 
common processes of natural evolution, these algorithms 
share many similarities; each maintains a population of 
solutions that are evolved through random alterations and 
selection. The differences between these procedures lie in 
the techniques they utilize to encode candidates, the type 
of alterations they use to create new solutions, and the 
mechanism they employ for selecting the new parents. 

Optimization (ACO) and conventional weight method are 
combined strategy for improving the Efficiency (Eff) , 
Reducing the Material cost(MC), Improving the Starting 
torque(ST) ,Minimize the Temperature Rise (TR) of 
Induction Motor (IM) solving the multimodal optimization 
problems.  ACO is inspired from the foraging behaviour of 
ants, and in particular, how ants can find shortest paths 
between food sources and their nest. It does not require 
initial values for the decision variables and uses a stochastic 
random search that is based on the chemical pheromone 
trail so that the derivative information is unnecessary. 
Among the number of design variables of the IM, seven 
variables are branded as primary design variables and the 
ACO based design strategy is built to optimize the chosen 
primary variables with a view to obtain the global best 
design. The elegant design strategy explores the solution 
space and provides the global best design, while it attempts 
to offer the best compromised design. The results of two IM 
design problems are presented with a view of exhibiting the 
superiority of the developed algorithms. 

---------------------------------------------------------------***---------------------------------------------------------------
ABSTRACT: This paper presents an Ant colony Based  
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These algorithms have yielded satisfactory results across a 
great variety of engineering optimization problems.  

Recently an Ant Colony Optimization (ACO) that is 
inspired from the foraging behaviour of ants has been 
suggested for solving optimization problems (Dorigoet al. 
1996). In analyzing the behaviours of real ants, it was 
found that the ants are capable of finding the shortest path 
from the nest to the food source without using cues. The 
ACO does not require initial values for the decision 
variables and uses a stochastic random search that is 
based on the chemical pheromone trail so that the 
derivative information is unnecessary. The ACO has been 
applied to solve the travelling salesman problem (Dorigoet 
al. 1997-a: 1997-b), the quadratic assignment problem 
(Gambardella et al. 2004) and the vehicle routing problem 
(Bell et al. 2004). 

The aim of this paper is to develop an ACO based 
method for optimally designing IMs with a view of 
effectively exploring the solution space and obtaining the 
global best solution. The developed methodology has been 
applied in designing two IMs and the performances have 
been studied. The paper is divided into five sections. 
Section 1 provides the introduction, section 2 overviews 
ACO, section 3 formulates the IM design problem and 
elucidates the proposed method (PM), section 4 discusses 
the results and section 5 concludes.  
2. ANT COLONY OPTIMIZATION 

ACO, inspired from the foraging behaviour of ants, 
is an optimization technique for solving multimodal 
optimization problems (Dorigoet al. 1990). Ants live in 
colonies and their behaviour is governed by the goal of 
colony survival rather than being focused on the survival 
of individuals. When searching for food, ants initially 
explore the area surrounding their nest in a random 
manner. While moving, ants leave a chemical pheromone 
trail on the ground. When choosing their way, they tend to 
choose, in probability, paths marked by strong pheromone 
concentrations. As soon as an ant finds a food source, it 
evaluates the quantity and the quality of the food and 
carries some of it back to the nest. During the return trip, 
the quantity of pheromone that an ant leaves on the 
ground may depend on the quantity and quality of the 
food. The pheromone trails will guide other ants to the 
food source. Also, they are capable of adapting to changes 
in the environment, for example, finding a new shortest 
path once the old one is no longer feasible due to a new 
obstacle.  

Each ant will build a full path, from the beginning 
to the end state, through the repetitive application of state 
transition rule. While constructing its tour, an ant also 
modifies the amount of pheromone on the visited path by 
applying the local updating rule. Once all ants have 
terminated their tour, the amount of pheromone on edge 
is modified again through the global updating rule. In 
other words, the pheromone-updating rules are designed 
so that they tend to give more pheromone to paths which 
should be visited by ants. In the following, the state 
transition rule, the local updating rule, and the global 
updating rule are briefly outlined. 

The state transition rule used by the ant system, 
called a random-proportional rule, is given by the 
following equation that gives the probability with which 
ant-k in node-i chooses to move to node- j. 
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Equation (1) indicates that the state transition 
rule favours transitions toward nodes connected by 
shorter edges and with greater amount of pheromone.  
While constructing its tour, each ant modifies the 
pheromone by the local updating rule. This can be written 
below: 

oijij tt   )()1()(
                                             

(2) 

The local updating rule is intended to shuffle the 
search process. Hence, the desirability of paths can be 
dynamically changed. The nodes visited earlier by a 
certain ant can be also explored later by other ants. The 
search space can be therefore extended. Furthermore, in 
so doing, ants will make a better use of pheromone 
information. Without local updating, all ants would search 
in a narrow neighbourhood of the best previous tour. 
When tours are completed, the global updating rule is 
applied to edges belonging to the best ant tour. This rule is 
intended to provide a greater amount of pheromone to 
shorter tours, which can be expressed below: 
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 This rule is intended to make the search more 
directed; therefore, the capability of finding the optimal 
solution can be enhanced through this rule in the problem 
solving process. The iterative procedure of updating the 
pheromone in tune with the cost of each ant’s tour is 
continued until the desired conditions are satisfied. The 
flow of the ACO is summarized below: 

1. Choose the ACO parameters such as ant colony size,  
,  etc. 

2. Randomly generate tour paths for all the ants in the 
colony to denote decision variables within the 
respective limits. 

3. Initialize the pheromone   

4. Evaluate the cost of each ant’s tour. 
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5. Perform global update of the pheromone  using Eq. 

(3). 
6. Perform local update of the pheromone  using Eq. 

(2) based on the probability given by Eq. (1). 
Repeat steps 4-6 till the desired convergence criteria are 
met.  

 3. PROPOSED METHOD 
The proposed ACO based solution method for 

ODIM involves formulation of the problem, representation 
of ants through the chosen design variables and 
construction of an augmented cost function,  .  
3.1 PROBLEM FORMULATION  

The ODIM problem is formulated by defining one 
or more objective functions and a set of constraints, while 
treating a few of the important design dimensions as 
decision variables:  

Minimize   )](,),(2),(1[)( xnobjhxhxhxh                 (6)                                                            
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The ODIM problem is formulated by defining an 
objective function and a set of constraints.  The chosen 
problem comprises four objectives of maximizing the 
efficiency, improving the starting torque, reduce the 
material cost and minimising the temperature rise. While 
combining all objective into a single objective, both the 
terms must be transformed into either maximization or a 
minimization function. In this paper, the objectives are 
transformed into minimization function and their relative 
significance controlled through a weight parameter w . 

Objective Function: The objective function )(xh  may be 

either performance oriented or based on some form cost 
consideration. In this paper, efficiency (Eff), starting 
torque (ST), active material cost (MC) and temperature 
rise (TR) are considered as objectives.  
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Objective-1:  Maximization of Efficiency 

Maximize 
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Objective-3:  Minimization of Active Material Cost 
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Objective-4:  Minimization of Temperature Rise 

Minimize         
cooltA

stP
TRxh  03.0)(4                    (18)                                                                 
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The multi-objective optimization problem can be tailored 
by combining several objectives through weight factors 
into a single objective so as to optimize the chosen 
objectives simultaneously. As the IM design problem 
involves both the minimization and maximization 
objectives, the maximization functions can be transformed 
into minimization functions and then blended into a single 
objective function through weight factors as  

Minimize   
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Where the weights w  that indicate the relative 

significance among the chosen objectives, are small 
positive real values, whose sum is usually set as one.   

The transformed objective function can be explicitly 
written with the chosen objectives of the design 
 

)h(w)h(w
)h(

w
)h(

wuxf 4433
21

1
2

11

1
1),( 





   

                 (23) 
 
An objective can be removed in the transformed objective 
function simply by setting the respective weight 
parameter zero. An objective can be active in the 
transformed objective function simply by setting the 
respective weight parameter one. A MTLBO based solution 
algorithm for multi-objective IM design problem is 
presented in this section. The method involves 
representation of design variables and formation of a 
performance function.  
                                                                                                

3.2 Representation of design variables 
The ant that comprises the tour path is represented to 
denote the chosen primary design variables, defined by 
Equation (9), in vector form as: 

   721721 ,,,,, xxxaaaAntPath                          
(24) 

3.3 Cost function 
The algorithm searches for optimal solution by minimizing 
an augmented cost function  , which is formulated from 
the objective function of  Equation (7) and the penalty 
terms representing the limit violation of the explicit 
constraints of Equation (8). The augmented cost function 
is written as 
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3.4 Solution process 
Each ant in the colony initially builds a feasible 

tour path that denotes a feasible solution. The augmented 
cost is calculated by considering the decoded values of the 
tour path of each ant. The pheromone values are globally 
updated using Eq. (3) and then locally through Eq. (2) 
based on the probability of Eq. (1) with a view of 
minimizing the     till the number of iterations reaches a 
specified maximum number of iterations.  

4. NUMERICAL RESULTS 
The proposed ACO based method is used to obtain 

the optimal design of two IMs. The first motor under study 
is rated for 7.5 kW, 400 V, 4 pole, 50 Hz and the second 
one for 30 kW, 400 V, 6 pole, 50 Hz. The usefulness of the 
PM is illustrated through comparing the performances 
with that of the GA based design approach. In this regard, 
the same set of primary design variables, cost function and 
design equations, involved in the PM, are used to develop 
the GA based design approach. The software packages are 
developed in Matlab platform and executed in a 2.67 GHz 
Intel core-i5 personal computer. There is no assurance 
that different executions of the developed design 

programs converge to the same design due to the 
stochastic nature of the GA and ACO and hence the 
algorithms are run 20 times for each IM and the best ones 
are presented.  

Table-1: Best and worst objective function values 

Mot
or 

Eff ST 

Best Worst Best Worst 

1 86.769 79.967 11.115 0.706 

2 90.863 83.948 16.964 0.257 

Mot
or 

MC TR 

Best Worst Best Worst 

1 6345.057 14559.06 10.620 57.293 

2 17427.195 44987.47 3 9.906 67.161 

 

The optimal designs with multiple objectives are 
presented in Tables 2 and 3 for motor 1 and 2 
respectively. The corresponding performances in terms of 
efficiency, starting torque material cost and temperature 
rise are also presented in the respective Tables of 2 and 3.  
It can be observed from these Tables that GA and ACO 
offer a compromised solution that lies in between the 
respective best and worst objective function values 
obtained with individual objectives. The quality of the 
compromised solutions cannot be estimated as it depends 
on the weight values assigned to the individual objectives 
and the range of the each objective function values. It is 
known that another compromised solution can be 
obtained by simply changing the weight parameter of each 
objective. 

 

Table-2.Comparison of results with multiple objectives 
for Motor-1. 

 

  GA PM 

Primary 
design 

variables 

x  

1x  1.88402 1.80945 

2x  0.37157  0.31248 

3x  12163.84  12442.16 

4x  0.31956  0.81214 

5x   3.43945  4.78128 

6x  4.95201  4.07190 

7x  1.18351  1.14620 

Constraints 

)(xg  

21 g  1.313  1.027 

22 g   0.886  0.749 

05.03 g  0.032  0.029 

5.14 g  9.044  11.808 

705 g  28.288  24.454 
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5.06 g  0.289  0.493 

75.07 g  0.932  0.866 

Performances Eff 84.276 84.431 

 

ST 3.306 3.478 

MC 9047.977 9039.798 

TR 28.288 24.454 

 

Table-3.Comparison of results with multiple objectives 
for Motor-2. 

  GA PM 

Primary 
design 

variables 

x  

1x  1.96496 1.95962 

2x  0.38338 0.37691 

3x  15668.38 15515.06 

4x  0.45094 0.45951 

5x  3.47195 3.74969 

6x  5.08892 5.17739 

7x  1.12812 1.12805 

Constraints 

)(xg  

21 g  1.142 1.142 

22 g  0.884 0.884 

05.03 g  0.025 0.025 

5.14 g  7.556 7.556 

705 g  27.581 27.580 

5.06 g  0.254 0.254 

75.07 g  0.923 0.923 

Performances Eff 88.639 88.641 

 

ST 2.594 2.596 

MC 25823.199 25823.472 

TR 27.581 27.578 

 

Tables 2 and 3 also contain the values of the constraints of 
Eq. (9) along with their limits. It can also be observed from 
these tables that both the methods bring the constraints 
such as maximum flux density, slip at full load, starting to 
full load torque ratio, etc., of Eq. (9) to lie within the 
respective limit, as the constraints are added as penalty 
terms in the fitness function of Eq. (25).   
5. CONCLUSIONS 

Indeed the ACO is a powerful population based 
stochastic algorithm for solving multimodal optimization 
problems. A new methodology involving ACO for solving 
ODIM problem has been suggested. It determines the 
optimal values for primary design variables that 
maximises efficiency and starting torque also reduces the 
temperature rise and material cost. The results on two IMs 
clearly demonstrate the ability of the PM to produce the 
best design of the IM. It has been demonstrated that the 

new approach fosters the continued use of ACO and will go 
a long way in serving as a useful tool in design problems. 
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NOMENCLATURE 

)(xf  objective function to be optimized 

GA genetic algorithm 

)(xg  a set of inequality constraints 

IM induction motor 

Eff   efficiency 

cooltA  total cooling area in 
2m  

D stator core diameter in m 

L stator core length in  m 

  peripheral speed m/s 

maxIter  maximum number of iterations for convergence 

check 

ACO ant colony optimization 
k
iJ

 
the set of nodes that remain to be visited by ant-k 

positioned on node-i 

kW  rating of IM 

min"" and max"" minimum and maximum limits of the   

respective variables 

kL  the length of the tour between edges  i and  j 

nd  number of decision variables 

ODIM optimal design of IM 

PM proposed method 

cusP    stator copper losses in W  

stP  total stator loss in W  

itP  iron loss in tooth in W  

icP   iron loss in core in W    

tP  total losses 

nlP  no load loss 

cusP  stator copper loss. 

curP  rotor copper loss. 

k
jiP

 
probability with which ant-k  in node-i  chooses to 

move to node- j 

Q
 

ant adjustable parameter  

w  weight values to represent relative significance 

between objectives 

X  vector of primary design variables 

  a set of limit violated constraints 

  weight constant of the penalty terms 

ij  the pheromone that is deposited on the edge 

between nodes i and j 
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  the inverse of the edge distance,  


 

and  adjustable parameters that determines the 

relative importance of pheromone trail and 
heuristic desirability 

  a heuristically defined parameter. 

  pheromone decay parameter in the range of    

(0,1).  

  augmented objective function 
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