OPTIMIZATION PROBLEMS SOLVED BY DIFFERENT PLATFORMS SAY OPTIMUM TOOL BOX (MATLAB) AND EXCEL SOLVER

Namrata Tripathi¹, Namita Srivastava²

Abstract - In this paper, the researcher highlights the use of MATLAB and excel solver in solving linear or nonlinear programming problems in an introductory operations research course. This is especially useful for interdisciplinary courses involving optimization problems. This research study explores a broad picture of the various applications of optimization methods used in engineering through different examples concerning areas of like 1. Financial planning 2. Scheduling 3. Transportation 4. Manufacturing.

Key Words: MATLAB, Optimization, Linear Programming, Non Linear Programming and Quadratic Programming.

1. INTRODUCTION

Optimization problems are real world problems we encounter in many areas such as mathematics, engineering, science, business and economics. Most real-life problems have several conflicting criteria to be considered simultaneously "Optimization is a process of selecting or converging onto a final solution amongst a number of possible options, such that a certain requirement or a set of requirements is best satisfied." i.e., you want a design in which some quantifiable property is minimized or maximized

- The Simplex Algorithm developed by G.B. Danzig ([2], (1963)) is used to solve linear programming problems.
- Work by Kuhn and Tucker in 1951 on the necessary and sufficient conditions for the optimal solution of problems laid the foundation for later research in non-linear programming.

Such problems can be overcome by using limited resources to achieve greater objective for optimum solution in an effective manner. It helps the organization to maximize its profit, minimize cost and time to complete a project or minimizing the total distance travelled or minimizing the total time to complete a project.

This technique can be used to solve problems of higher dimensions. In this paper, the researcher has tried to provide an optimum solution by using tool of MATLAB and Excel solver .

1.1 Mathematical Model & Spread Sheet model:

Optimum tool can be used to run any optimization toolbox solver, and a mathematical model implemented in a spreadsheet is called a spreadsheet model. There are also certain problems where more than two variables are involved such problems are complex and tedious to calculate but MATLAB and Excel solver has made such problems, fairly a simple task.

The first step is to organize the in command window write optimum tool you will get optimization tool as according to your data put all the things run solver is ready to push the button start we will gets the results and start the procedure of Excel spreadsheet to represent the model. A separate cell is used for decision variables then a formula can be created to represents the objective function and another formula for each constraint left hand side.

1.2. Different kinds of optimization:

2. Main Results:

2.1 Purchasing Problem (Linear Model):

A dealer wishes to purchase a number of fans and sewing machines. He was only Rs 5760 to invest and has space for almost 20 items. A fan costs him Rs. 360 and a sewing machine is Rs. 240. His expectation is that he can sell a fan at profit of Rs. 22 and a sewing machine at a profit of Rs. 18 Assuming that he can sell all the items that he can buy, how should be invest his money in order to maximize.

Creating the Linear Programming model to represent the problem:

Decision variables are the amounts of money should be invested in each item

 X_1 = Amount of money to invest in fans X_2 = Amount of money to invest in sewing machines. Objective is to maximize the total cost The LPP becomes $MaxZ = 22x_1 + 18x_2$ $x_1 + x_2 \le 20$ $360x_1 + 240x_2 \le 5760$ and $x_1, x_2 \ge 0$

📣 Optimization Tool

File Help

Problem Setup and Results								
Solver:	linprog -	linprog - Linear programming						
Algorithm:	Large sca	Large scale						
Problem								
f: [-22 -18]							
Constraint	-							
Linear ineg	si Walition	٨.	11 1-260 240-1 0-0 -11	h	[20:5760:0:0]			
Linear ineq	uanties:	Ai	[11;500 240;-1 0;0 -1]] 0;	[20;3700;0;0]			
Linear equ	alities:	Aeq:		beq:				
Bounds:	l	ower:		Upper:				
Start point	Start noint:							
 Let alg 	orithm ch	oose p	pint					
© Specify point:								
Run solver and view results								
Start Pause Stop								
Current iter	Current iteration: 5 Clear Results							
Optimization running. Objective function value: -391,9999999967804								

Optimization terminated.

2.2. Demonstrate by excel solver:

	А	В	С	D	E	F	G
1	LINEAF	R PROG	RAMMI	NG			
2							
3	Decisio	on varia	ables				
4	x1 represents number of fans					22	
5	x2 repr	esents	the nur	nber of	sewing	18	
6	Objecti	ive fun	ction			808	
7	profit	per fan	Rs. 22				
8	profit	per sev	ving ma	chine 1	8		
9	maxim	um pre	ofit is				
10	Maxz =	22x1+1	8x2				
11	Constr	aints					
12	He has	space	20 item	15		40	20
13	A fan c	ost is R	s 360 ar	ıd a sev	ving ma	12240	5760
14	He has	only	Rs 5760				
15							

2.3 Solver Screen:

r Parameters	- 200.	100		
Se <u>t</u> Objective:	\$F\$6			
To: O Max) Mi <u>n</u>	◎ <u>V</u> alue Of:	0	
By Changing Variable Ce	ells:			
\$F\$4:\$F\$5				
S <u>u</u> bject to the Constrair \$F\$12 <= \$G\$12 \$F\$13 <= \$G\$13	nts:		· · · · · · · · · · · · · · · · · · ·	Add
				<u>C</u> hange
				Delete
				Delete Reset All

The maximum value of the objective function z=392 occurs at the extreme point (8, 12).Hence the optimal solution is $x_1=8$ and $x_2=22$.

2.4 Problem: Same as above procedure

2.4.1. Maximize $z = 3x_1+2x_2$, Subject to the constraints: $x_1+x_2 \le 4$, $x_1-x_2 \le 2$, and $x_1, x_2 \ge 0$ 2.4.2. Minimize $z = x_2-3x_3+2x_5$, Subject to the constraints: $3x_2-x_3+2x_5 \le 7$, $-2x_2+4x_3 \le 12$, $4x_2+3x_3+8x_5 \le 10$, and $x_2, x_3, x_5 \ge 10$.

3. Nonlinear programming (NLP): NLP is the process of solving an optimization problem defined by a system of equalities and inequalities, collectively termed constraints, over a set of unknown real variables, along with an objective function to be maximized or minimized, where some of the constraints or the objective function are nonlinear.

Determining an optimal solution is often difficult, if not impossible in Quadratic programming: The only difference between the quadratic programming and linear programming, is that the function can be a quadratic form: $\underline{x}^* = \arg \min_{x} \underline{x}^T H \underline{x} + \underline{c}^T \underline{x} \quad s.t. \quad \left\{ \mathbf{A}^{(m,n)} \underline{x} = \underline{b}; \mathbf{B} \underline{x} \ge \underline{d} \right\}$

3.1Problem (Non Linear Quadratic Programming):-

 $max \, z = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$

Subject to

$x_1 + 2x_2 \le 2$ and $x_1, x_2 \ge 0$

File Help							
Problem Set	tup and Results						
Solver:	quadprog - Qua	dratic programming					
Algorithm:	Active set	Active set					
Problem	<u>.</u>						
H: [21;	1 2]		f:	[-4; -6]			
Constraint	15:						
Linear inec	qualities: A:	[12;0-1;-10]	b:	[2;0;0]			
Linear equ	alities: Aeq:		beq:				
Bounds:	Lower:		Upper:				
Start point							
• • Let alg	jorithm choose po	pint					
Specif	y point:						
Pup colver	and view recults						
Start	Pause	Stop					
Current iter	ration: 2				Clear Results		
Ontimization	rupping						
Optimized Off	running. - Kasushari E 00'	******					

3.2 Problem (Isqlin constrained linear least squares):-

 $\min z = x_1^2 + x_2^2 + x_3^2$

subject to the constraint

 $x_1 + 2x_2 + 4x_3 = 7$

Optimization Tool								
File Help								
Problem Setup and Results								
Solver: Isqlin - Constrained linear least squ	r: Isqlin - Constrained linear least squares							
Algorithm: Large scale	thm: Large scale							
Problem								
C: eye(3)	d:	zeros(3,1)						
Constraints								
Linear inequalities: A:	b:							
Linear equalities: Aeg: [1.2.4]	hea:	7						
Bounds: Lower:	Unner							
bounds: Lower: Upper:								
Start point:								
Let algorithm choose point								
⊘ Specify point:								
Run solver and view results								
Start Pause Stop								
Current iteration: 1 Clear Results								
Objective function value: 2.33333333333333 Objective function value: 2.33333333333333								

4. CONCLUSIONS

So we can conclude that this method can be use on any Linear Programming, Non Linear Programming, Quadratic Programming, geometric programming, dynamic programming and integer programming,

Optimization problems in many fields can be modeled and solved using MATLAB.

This application will be easily solved by MATLAB. This way is particularly helpful for students who are researchers and still want to take thesis courses. It does not require knowledge of complex mathematical concepts behind the solution algorithms.

REFERENCES

[1] Belegundu, A.D. and Chandrupatla, T.R."Optimization concepts and applications in engineering", Cambridge University Press. 2011

[2] G. B. Dantzig,"Linear Programming and Extensions", Princeton University Press, Princeton, NJ. 1963.

[3] John Walkenbach, "Excel 2007 Formulas", John Wiley and Sons. 2007

[4] J.J. and Wright, S.J." Optimization software guide". Society for Industrial and Applied Mathematics. 1993.

[5] T. Cliff Ragsdale, "Spreadsheet Modeling and Decision Analysis, 6th Edition". SOUTH-WESTERN, Cengage Learning. 2011.

[6] N.Tripathi," A Study of Determination of Energy for Open Channel Flows Under Sluice Gate", Bulletin of the Marathwada Mathematical Society,13(2), pp. 48-52, 2012.

[7] Namrata Tripathi," Common fixed point theorem of a countable family of λ demicontractive mapping in Banach spaces", International Journal of Mathematics Trends and Technology, 11(2), pp. 89-96, 2014.

[8] Namrata Tripathi, "Some Suzuki-type fixed point theorems for generalized multivalued mappings and applications, South Asian Journal of Mathematics (SAJM), 2(3), pp. 205-209, 2012

BIOGRAPHIES

Dr. NAMRATA TRIPATHI AssistantProfessor (on Contract), Department of Mathematics and Computer Science, Maulana Azad National Institute of Technology, Bhopal(M.P),INDIA.