
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 707

Automatic Bug Triage with Software

1Dhanashree Lohagaonkar, 2Kanchan Kharat , 3Omkar Bhise, 4Abhijeet Korhale,
5Prof Mrs H.A.Shinde

1,2,3,4 Student, Department of Computer Engineering All India Shri Shivaji Memorial Society Polytechinc,
Kennedy road, Pune, Maharashtra, India.

5Lecturer, Department of Computer Engineering All India Shri Shivaji Memorial Society Polytechnic
Kennedy Road, Pune, Maharashtra, India.

---***---
Abstract—Software companies spend over 45 percent of cost
in dealing with software bugs. An inevitable step of fixing bugs
is bug triage, which aims to correctly assign a developer to a
new bug. To decrease the time cost in manual work, text
classification techniques are applied to conduct automatic bug
triage. In this paper, we address the problem of data reduction
for bug triage, i.e., how to reduce the scale and improve the
quality of bug data. We combine instance selection with
feature selection to simultaneously reduce data scale on the
bug dimension and the word dimension. To determine the
order of applying instance selection and feature selection, we
extract attributes from historical bug data sets and build a
predictive model for a new bug data set. We empirically
investigate the performance of data reduction on totally
600,000 bug reports of two large open source projects, namely
Eclipse and Mozilla. The results show that our data reduction
can effectively reduce the data scale and improve the accuracy
of bug triage. Our work provides an approach to leveraging
techniques on data processing to form reduced and high-
quality bug data in software development and maintenance.

INTRODUCTION

software repositories is an interdisciplinary domain, which
aims to employ data mining to deal with software
engineering problems In modern software development,
software repositories are large-scale databases for storing
the output of software development, e.g., source code, bugs,
emails, and specifications. Tradi-tional software analysis is
not completely suitable for the large-scale and complex data
in software repositories [58]. Data mining has emerged as a
promising means to handle software data (e.g., [7], [32]). By
leveraging data mining techniques, mining software
repositories can uncover inter-esting information in
software repositories and solve real-world software
problems.

A bug repository (a typical software repository, for storing
details of bugs), plays an important role in managing soft-
ware bugs. Software bugs are inevitable and fixing bugs is
expensive in software development. Software companies
spend over 45 percent of cost in fixing bugs [39]. Large soft-
ware projects deploy bug repositories (also called bug track-
ing systems) to support information collection and to assist.

BACKGROUND AND MOTIVATION

Background

Bug repositories are widely used for maintaining software
bugs, e.g., a popular and open source bug repository, Bug-

zilla [5]. Once a software bug is found, a reporter (typically a
developer, a tester, or an end user) records this bug to the
bug repository. A recorded bug is called a bug report, which
has multiple items for detailing the information of repro-
ducing the bug. In Fig. 1, we show a part of bug report for
bug 284541 in Eclipse.2 In a bug report, the summary and
the description are two key items about the information of
the bug, which are recorded in natural languages. As their
names suggest, the summary denotes a general statement for
identifying a bug while the description gives the details for
reproducing the bug. Some other items are recorded in a bug
report for facilitating the identification of the bug, such as
the product, the platform, and the importance. Once a bug
report is formed, a human triager assigns this bug to a
developer, who will try to fix this bug. This developer is
recorded in an item assigned-to. The assigned-to will change
to another developer if the previously assigned developer
cannot fix this bug. The process of assigning a correct
developer for fixing the bug is called bug triage. For example,
in Fig. 1, the developer Dimitar Giormov is the final assigned-
to developer of bug 284541. A developer, who is assigned to
a new bug report, starts to fix the bug based on the
knowledge of historical bug fix-ing [36], [64]. Typically, the
developer pays efforts to under-stand the new bug report
and to examine historically fixed bugs as a reference (e.g.,
searching for similar bugs [54] and applying existing
solutions to the new bug [28]).An item status of a bug report
is changed according to the current result of handling this
bug until the bug is completely fixed. Changes of a bug report
are stored in an item history. Table 1 presents a part of
history of bug 284541. This bug has been assigned to three
developers and only the last developer can handle this bug
correctly. Changing developers lasts for over seven months
while fixing this bug only costs three days.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 708

Motivation

Real-world data always include noise and redundancy [31].
Noisy data may mislead the data analysis techniques [66]
while redundant data may increase the cost of data process-
ing [19]. In bug repositories, all the bug reports are filled by
developers in natural languages. The low-quality bugs accu-
mulate in bug repositories with the growth in scale. Such

Fig. 2. Illustration of reducing bug data for bug triage. Sub-

figure

(a) presents the framework of existing work on bug
triage. Before train-ing a classifier with a bug data set, we
add a phase of data reduction, in (b), which combines the
techniques of instance selection and feature selection to
reduce the scale of bug data. In bug data reduction, a prob-
lem is how to determine the order of two reduction
techniques. In (c), based on the attributes of historical bug
data sets, we propose a binary classification method to
predict reduction orders.

Example 1 (Bug 205900). Current version in Eclipse Europa
discovery repository broken.

. . . [Plug-ins] all installed correctly and do not show
any errors in Plug-in configuration view. Whenever I try to
add a [diagram name] diagram, the wizard cannot be started
due to a missing [class name] class . . .

In this bug report, some words, e.g., installed, show, started,
and missing, are commonly used for describing bugs. For
text classification, such common words are not helpful for

the quality of prediction. Hence, we tend to remove these
words to reduce the computation for bug tri-age. However,
for the text classification, the redundant words in bugs
cannot be removed directly. Thus, we want to adapt a
relevant technique for bug triage.

To study the noisy bug report, we take the bug report of
bug 201598 as Example 2 (Note that both the summary and
the description are included).

Example 2 (Bug 201598). 3.3.1 about says 3.3.0.

Build id: M20070829-0800. 3.3.1 about says 3.3.0.

This bug report presents the error in the version dialog.
But the details are not clear. Unless a developer is very
familiar with the background of this bug, it is hard to find the
details. According to the item history, this bug is fixed by the
developer who has reported this bug. But the summary of
this bug may make other developers confused. Moreover,
from the perspective of data processing, espe-cially
automatic processing, the words in this bug may be removed
since these words are not helpful to identify this bug. Thus, it
is necessary to remove the noisy bug reports and words for
bug triage.

Algorithm 1. Data reduction based on FS ! IS

Input: training set T with n words and m bug reports,

reduction order FS!IS

final number nF of words, final
number mI of bug reports,

Output: reduced data set T FI for bug triage

1) apply FS to n words of T and calculate objective values

for all the words;

2) select the top nF words of T and generate a training
set T F ;

3) apply IS to mI bug reports of T F ;

4) terminate IS when the number of bug reports is equal to
or less than mI and generate the final training set T FI .

Algorithm 2. NaïveBayes Algorithm (Use to classifying data)-

Input- Training data set
Output-

1. To classify fixed bug from data set

2.To classify most solved bug on which type.

3.To assign bug to developer to most solved bugs as
particular type of bug.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 709

EXISTING SYSTEM:

A time-consuming step of handling software bugs is
bug triage, which aims to assign a correct developer to fix a
new bug. In traditional software development, new bugs are
manually triaged by an expert developer, i.e., a human triage.
Due to the large number of daily bugs and the lack of
expertise of all the bugs, manual bug triage is expensive in
time cost and low in accuracy. In manual bug triage in
Eclipse, percent of bugs are assigned by mistake while the
time cost between opening one bug and its first triaging is
19.3 days on average. To avoid the expensive cost of manual
bug triage, existing work has proposed an automatic bug
triage approach, which applies text classification techniques
to predict developers for bug reports. In this approach, a bug
report is mapped to a document and a related developer is
mapped to the label of the document. Then, bug triage is
converted into a problem of text classification and is
automatically solved with mature text classification
techniques, e.g., Naive Bayes. Based on the results of text
classification, a human triage assigns new bugs by
incorporating his/her expertise. However, large-scale and
low-quality bug data in bug repositories block the
techniques of automatic bug triage. .Since software bug data
are a kind of free-form text data, it is necessary to generate
well-processed bug data to facilitate the application.

we address the problem of data reduction for bug triage, i.e.,
how to reduce the bug data to save the labor cost of
developers and improve the quality to facilitate the process
of bug triage. Data reduction for bug triage aims to build a
small-scale and high-quality set of bug data by removing bug
reports and words, which are redundant or non-informative.
In our work, we combine existing techniques of instance
selection and feature selection to simultaneously reduce the
bug dimension and the word dimension. The reduced bug
data contain fewer bug reports and fewer words than the
original bug data and provide similar information over the
original bug data. We evaluate the reduced bug data
according to two criteria: the scale of a data set and the
accuracy of bug triage. To avoid the bias of a single
algorithm, we empirically examine the results of four
instance selection algorithms and four feature selection
algorithm.

SOFTWARE REQUIREMENTS:

 Operating System : Windows 7
 Technology : Java and J2EE
 Web Technologies : Html, JavaScript, CSS
 IDE : Eclipse Juno
 Web Server : Tomcat
 Database : My SQL
 Java Version : J2SDK1.7

HARDWARE REQUIREMENTS:

 Hardware :Pentium Dual Core
 Speed :2.80 GHz

 RAM : 1GB
 Hard Disk : 20 GB
 Floppy Drive : 1.44 MB
 KeyBoard :Standard Windows Keyboard
 Mouse :Two or Three Button Mouse
 Monitor : SVGA

MODULE DESCRIPTION:

INSTANCE SELECTION:

Instance selection and feature selection are widely used
techniques in data processing. For a given data set in a
certain application, instance selection is to obtain a subset of
relevant instances (i.e., bug reports in bug data) while
feature selection aims to obtain a subset of relevant features
(i.e., words in bug data). In our work, we employ the
combination of instance selection and feature selection.

DATA REDUCTION:

In our work, to save the labor cost of developers, the data
reduction for bug triage has two goals.

1) Reducing the data scale.

2) Improving the accuracy of bug triage.

DISADVANTAGES:

 We present the problem of data reduction for bug
triage. This problem aims to augment the data set of bug
triage in two aspects, namely

a) To simultaneously reduce the scales of the bug
dimension and the word dimension.

b) To improve the accuracy of bug triage.

 We propose a combination approach to addressing
the problem of data reduction. This can be viewed as an
application of instance selection and feature selection in bug
repositories.

PROPOSED SYSTEM:

In this part, we present the data preparation for applying
the bug data reduction. We evaluate the bug data reduction
on bug repositories of two large open source projects,
namely Eclipse and Mozilla. Eclipse is a multi-language
software development environment, including an Integrated
Development Environment (IDE) and an extensible plug-in
system; Mozilla is an Internet application suite, including
some classic products, such as the Firefox browser and the
Thunderbird email client. Up to December 31, 2011, 366,443
bug reports over 10 years.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 710

RESULT:

We examine the results of bug data reduction on bug
repositories of two projects, Eclipse and Mozilla. For each
project, we evaluate results on five data sets and each data
set is over 10,000 bug reports, which are fixed or duplicate
bug reports. We check bug reports in the two projects and
find out that 45.44 percent of bug reports in Eclipse and
28.23 percent of bug reports in Mozilla are fixed or duplicate.

CONCLUSION:

Bug triage is an expensive step of software maintenance in
both labor cost and time cost. Our work provides a
techniques on data processing to form reduced and high-
quality bug data in software development and maintenance.
The results of data reduction in bug triage to explore how to
prepare a high quality bug data set and tackle a domain
specific software task. To find out the potential relationship
between the attributes of bug data sets and the reduction
orders using predicting reduction orders.

REFERENCE

1. S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise

in defect prediction,” in Proc. 32nd ACM/IEEE Int. Conf.
Softw. Eng., May 2010, pp. 481–490.

2. A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals,

“Predicting the severity of a reported bug,” in Proc. 7th
IEEE Working Conf. Mining Softw. Repositories, May
2010, pp. 1–10.

3. G. Lang, Q. Li, and L. Guo, “Discernibility matrix

4. D. Lo, J. Li, L. Wong, and S. C. Khoo, “Mining iterative
generators and representative rules for software
specification discovery,” IEEE Trans. Knowl. Data Eng.,
vol. 23, no. 2, pp. 282–296, Feb. 2011.

5. Mozilla. (2014). [Online]. Available:
http://mozilla.org/

6. D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug

7. G. Miao, L. E. Moser, X. Yan, S. Tao, Y. Chen, and N.
Anerousis, “Generative models for ticket resolution in
expert networks,” in Proc. 16th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2010, pp. 733–742.

8. E. Murphy-Hill, T. Zimmermann, C. Bird, and N.
Nagappan, “The design of bug fixes,” in Proc. Int. Conf.
Softw. Eng., 2013, pp. 332– 341.

9. J. A. Olvera-Lopez, J. A.Carrasco-Ochoa, J. F. Martınez-

Trinidad, and J. Kittler, “A review of instance selection
methods,” Artif. Intell. Rev., vol. 34, no. 2, pp. 133–143,
2010.

10. J. A. Olvera-Lopez, J. F. Martınez-Trinidad, and J. A.

Carrasco-Ochoa, “Restricted sequential floating search
applied to object selection,” in Proc. Int. Conf. Mach.
Learn. Data Mining Pattern Rec-ognit., 2007, pp. 694–
702.

11. R. S. Pressman, Software Engineering: A Practitioner’s

Approach, 7th
ed. New York, NY, USA: McGraw-Hill, 2010.

12. J. W. Park, M. W. Lee, J. Kim, S. W. Hwang, and S. Kim,

“Costriage: A cost-aware triage algorithm for bug
reporting sys-tems,” in Proc. 25th Conf. Artif. Intell., Aug.
2011, pp. 139–144.

13. J. C. Riquelme, J. S. Aguilar-Ruız, and M. Toro, “Finding

represen-tative patterns with ordered projections,”
Pattern Recognit., vol. 36,

pp. 1009–1018, 2003.

simplifica-tion with new attribute dependency functions
for incomplete information systems,” Knowl. Inform.
Syst., vol. 37, no. 3, pp. 611–638, 2013.

reports using a vocabulary-based expertise model of
developers,” in Proc. 6th Int. Working Conf. Mining
Softw. Repositories, May 2009, pp.131-140.

