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Abstract:- The Fast Fourier Transform is an qualified 
algorithm for computing the Discrete Fourier Transform in 
terms of reduced number of computations than that of direct 
evaluation of DFT. It has several applications in signal 
processing for frequency transformations. Because of the 
complexity of the FFT algorithm, recently various FFT 
algorithms have been proposed to meet real – time processing 
requirements and to reduce hardware complexity over the last 
decades. So it is of considerable interest to researchers of 
signal processing technology to compare these algorithms. In 
this paper, a general analysis and comparison of the FFT 
algorithms is crisply done. The analysis of each algorithm 
includes the pace of the computation, amount of computations 
and memory requirements. 
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1. INTRODUCTION  

A sufficient number of FFT algorithms have been 
developed earlier for the efficient computation of the DFT. 
The first major breakthrough was the Cooley-Tukey 
algorithm [1] developed in the mid-sixties which resulted in a 
flood of works on FFTs. This algorithm reduced the 
complexity of a DFT from O(N) to O(NlogN), which at the time 
was a incredible improvement in efficiency. Algorithms which 
followed have achieved this complexity reduction to varying 
degrees. The Cooley-Tukey algorithm was a Radix-2 
algorithm. The next few radix algorithms developed were the 
Radix-3, Radix-4, and the Mixed Radix algorithm. Further 
research led to the Fast Hartley Transform (FHT) and the 
Split Radix (SPRAD) algorithm 

In this paper, from the literature we analyze each algorithm 
under a variety of constraints, and to use the statistics to 
create a best solution for the computation of FFT based on 
the constraints. 

2. ALGORITHM 

2.1 Radix 2 FFT Algorithm (RAD2) 

In computation of the N = 2n point DFT by the divide-and 
conquer approach., split the N-point data sequence into 
two N/2-point data sequences a1(n) and a2(n), 
corresponding to the even-numbered and odd-numbered 
samples of x(n), respectively, that is, 

a1(n) = x(2n) 

a2(n) = x(2n +1) , n = 0, 1,…..(N/2 – 1) 

Thus a1(n) and a2(n) are obtained by decimating x(n) by a 
factor of 2, and hence the resulting FFT algorithm is called 
a decimation-in-time algorithm. 

Now the N-point DFT can be expressed in terms of the DFT's 
of the decimated sequences as follows: 

 

But WN
2 = WN/2. With this substitution, the equation can be 

expressed as 

 

where F1(k) and F2(k) are the N/2-point DFTs of the 
sequences f1(m) and f2(m), respectively. 

Since F1(k) and F2(k) are periodic, with period N/2, we 
have F1(k+N/2) = F1(k) and F2(k+N/2) = F2(k). In addition, 
the factor WN

k+N/2 = -WN
k. Hence the equation may be 

expressed as 

 

It is observed that the direct computation of F1(k) requires 
(N/2)2 complex multiplications. It is also common to the 
computation of F2(k). Furthermore, there are N/2 additional 
complex multiplications required to compute WN

kF2(k). 
Hence the computation of X(k) requires 2(N/2)2 + N/2 
= N 2/2 + N/2 complex multiplications. This initial step 
fallout in a reduction of the number of multiplications 
from N 2 to N 2/2 + N/2, which is about a factor of 2 
for N large. 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

               Volume: 05 Issue: 10 | Oct 2018                    www.irjet.net                                                                     p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 7.211       |       ISO 9001:2008 Certified Journal       |     Page 1488 
 

2.2 Radix 4 FFT Algorithm (RAD4) 

When the number of data points N in the DFT is a power of 4 
(i.e., N = 4v),  always use a radix-2 algorithm for the 
computation. However, for this case, it is more proficient 
computationally to employ a radix-r FFT algorithm. In this 
algorithm, the N-point input sequence is decimated into four 
subsequences, x(4n), x(4n+1), x(4n+2), x(4n+3), n = 0, 1, ... 
, N/4-1. 

 

Thus the four N/4-point DFTs F(l, q)obtained from the above 
equation are collected together to arrive the N-point DFT. 
The expression for combining the N/4-point DFTs defines a 
radix-4 decimation-in-time butterfly, which can be expressed 
in matrix form as 

 

2.3 Split Radix FFT Algorithm (SPRAD) 

The split-radix FFT, along with its variations, long had the 
distinction of achieving the lowest published arithmetic 
operation count (total exact number of required real 
additions and multiplications) to compute a DFT of power-
of-two sizes N. The split-radix algorithm can only be applied 
when N is a multiple of 4, but since it breaks a DFT into 
smaller DFTs it can be combined with any other FFT 
algorithm as desired.   

3. COMPARISON OF ALGORITHMS 

 Typically, the primary touchstone criteria have been the 
number of mathematical operations (multiplications and 
additions), and/or the overall computation speed. The 
effectiveness of an algorithm is most affected by the 
arithmetic complexity, usually expressed in terms of a count 
of real multiplications and additions. However, on general 
purpose computers this is not a very good level and other 

factors need to be considered as well. For instance, the issue 
of memory usage is very important for memory constrained 
applications.  
 
3.1 Amount of Computations 

As many CPUs have notably different speeds on floating 
point and integer operations, it is considered to individually 
account for floating point and integer arithmetic. It is a well 
known fact that most new architectures compute floating 
point operations more proficient than integer operations. 
Also, most indexing and loop control is done using integer 
arithmetic. Many FFT algorithms require a large number of 
division by-two operations which is competently 
accomplished by using a binary shift operator. The results are 
referred from the literature. 

Table -1: Amount of Computation 

Algorithm Float 
Add 

Float 
Mul 

Int 
Add 

Int 
Mul 

Shift 

RAD2 14336 20480 19450 2084 1023 

RAD4 8960 14336 12902 3071 277 

SPRAD 5861 5522 12664 2542 1988 

 
3.2 Pace of computation 

 In most of the applications, for general purpose 
computers, with easy availability of faster CPUs and memory 
not being a fore most constraint, the fastest algorithm is by 
far treated as the best algorithm. Thus, a common choice to 
rank algorithms is by their computation speed.  

Table -2: Pace of Computation 

Algorithm 
Order of FFT 

16 64 256 1024 

RAD2 20 60 260 1960 

RAD4 20 60 300 1800 

SPRAD 20 40 140 660 

 
3.3 Memory Requirement 

In portable signal processing applications, the FFT is a 
core computational component. However, few applications 
cannot manage a huge memory space for arriving FFTs. While 
memory usage is important for specification of hardware, 
memory accesses also account for a significant portion of 
computation time. These observations from the literature 
insisted us to include memory usage as one of the criteria in 
deciding the effectiveness of the various FFT algorithms.   
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Table -3: Memory Requirements 

Algorithm 
Memory Requirement 

(Bytes) 

RAD2 72240 

RAD4 72536 

SPRAD 72508 

 
4. CONCLUSIONS 

 The amount of computation is graphically given below. 
The different arithmetic are compared. 

 

Chart -1: Amount of Computation 

For Shift operations, RAD 4 algorithm is best option if the 
constraint is number of computations. 

The pace of the computation reveals that SPRAD algorithm is 
best among the three. 

 

Chart -2: Pace of Computation 

The memory requirements are distributed equally for all the 
three algorithms. 

 

Chart -3: Memory Requirements 
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