
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 10 | Oct 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1487

A Study on Algorithms for FFT computations

Saravanakumar Chandrasekaran1, Dr.G.Themozhi2

1Assistant Professor, Department of ECE, Valliammai Engineering College, Tamil Nadu
2Professor and Head, Department of ECE, Tagore Engineering College, Tamil Nadu

---***--
Abstract:- The Fast Fourier Transform is an qualified
algorithm for computing the Discrete Fourier Transform in
terms of reduced number of computations than that of direct
evaluation of DFT. It has several applications in signal
processing for frequency transformations. Because of the
complexity of the FFT algorithm, recently various FFT
algorithms have been proposed to meet real – time processing
requirements and to reduce hardware complexity over the last
decades. So it is of considerable interest to researchers of
signal processing technology to compare these algorithms. In
this paper, a general analysis and comparison of the FFT
algorithms is crisply done. The analysis of each algorithm
includes the pace of the computation, amount of computations
and memory requirements.

Key Words: Fast Fourier Transform, Complexity,
Comparison, Algorithm, Memory.

1. INTRODUCTION

A sufficient number of FFT algorithms have been
developed earlier for the efficient computation of the DFT.
The first major breakthrough was the Cooley-Tukey
algorithm [1] developed in the mid-sixties which resulted in a
flood of works on FFTs. This algorithm reduced the
complexity of a DFT from O(N) to O(NlogN), which at the time
was a incredible improvement in efficiency. Algorithms which
followed have achieved this complexity reduction to varying
degrees. The Cooley-Tukey algorithm was a Radix-2
algorithm. The next few radix algorithms developed were the
Radix-3, Radix-4, and the Mixed Radix algorithm. Further
research led to the Fast Hartley Transform (FHT) and the
Split Radix (SPRAD) algorithm

In this paper, from the literature we analyze each algorithm
under a variety of constraints, and to use the statistics to
create a best solution for the computation of FFT based on
the constraints.

2. ALGORITHM

2.1 Radix 2 FFT Algorithm (RAD2)

In computation of the N = 2n point DFT by the divide-and
conquer approach., split the N-point data sequence into
two N/2-point data sequences a1(n) and a2(n),
corresponding to the even-numbered and odd-numbered
samples of x(n), respectively, that is,

a1(n) = x(2n)

a2(n) = x(2n +1) , n = 0, 1,…..(N/2 – 1)

Thus a1(n) and a2(n) are obtained by decimating x(n) by a
factor of 2, and hence the resulting FFT algorithm is called
a decimation-in-time algorithm.

Now the N-point DFT can be expressed in terms of the DFT's
of the decimated sequences as follows:

But WN
2 = WN/2. With this substitution, the equation can be

expressed as

where F1(k) and F2(k) are the N/2-point DFTs of the
sequences f1(m) and f2(m), respectively.

Since F1(k) and F2(k) are periodic, with period N/2, we
have F1(k+N/2) = F1(k) and F2(k+N/2) = F2(k). In addition,
the factor WN

k+N/2 = -WN
k. Hence the equation may be

expressed as

It is observed that the direct computation of F1(k) requires
(N/2)2 complex multiplications. It is also common to the
computation of F2(k). Furthermore, there are N/2 additional
complex multiplications required to compute WN

kF2(k).
Hence the computation of X(k) requires 2(N/2)2 + N/2
= N 2/2 + N/2 complex multiplications. This initial step
fallout in a reduction of the number of multiplications
from N 2 to N 2/2 + N/2, which is about a factor of 2
for N large.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 10 | Oct 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1488

2.2 Radix 4 FFT Algorithm (RAD4)

When the number of data points N in the DFT is a power of 4
(i.e., N = 4v), always use a radix-2 algorithm for the
computation. However, for this case, it is more proficient
computationally to employ a radix-r FFT algorithm. In this
algorithm, the N-point input sequence is decimated into four
subsequences, x(4n), x(4n+1), x(4n+2), x(4n+3), n = 0, 1, ...
, N/4-1.

Thus the four N/4-point DFTs F(l, q)obtained from the above
equation are collected together to arrive the N-point DFT.
The expression for combining the N/4-point DFTs defines a
radix-4 decimation-in-time butterfly, which can be expressed
in matrix form as

2.3 Split Radix FFT Algorithm (SPRAD)

The split-radix FFT, along with its variations, long had the
distinction of achieving the lowest published arithmetic
operation count (total exact number of required real
additions and multiplications) to compute a DFT of power-
of-two sizes N. The split-radix algorithm can only be applied
when N is a multiple of 4, but since it breaks a DFT into
smaller DFTs it can be combined with any other FFT
algorithm as desired.

3. COMPARISON OF ALGORITHMS

 Typically, the primary touchstone criteria have been the
number of mathematical operations (multiplications and
additions), and/or the overall computation speed. The
effectiveness of an algorithm is most affected by the
arithmetic complexity, usually expressed in terms of a count
of real multiplications and additions. However, on general
purpose computers this is not a very good level and other

factors need to be considered as well. For instance, the issue
of memory usage is very important for memory constrained
applications.

3.1 Amount of Computations

As many CPUs have notably different speeds on floating
point and integer operations, it is considered to individually
account for floating point and integer arithmetic. It is a well
known fact that most new architectures compute floating
point operations more proficient than integer operations.
Also, most indexing and loop control is done using integer
arithmetic. Many FFT algorithms require a large number of
division by-two operations which is competently
accomplished by using a binary shift operator. The results are
referred from the literature.

Table -1: Amount of Computation

Algorithm Float
Add

Float
Mul

Int
Add

Int
Mul

Shift

RAD2 14336 20480 19450 2084 1023

RAD4 8960 14336 12902 3071 277

SPRAD 5861 5522 12664 2542 1988

3.2 Pace of computation

 In most of the applications, for general purpose
computers, with easy availability of faster CPUs and memory
not being a fore most constraint, the fastest algorithm is by
far treated as the best algorithm. Thus, a common choice to
rank algorithms is by their computation speed.

Table -2: Pace of Computation

Algorithm
Order of FFT

16 64 256 1024

RAD2 20 60 260 1960

RAD4 20 60 300 1800

SPRAD 20 40 140 660

3.3 Memory Requirement

In portable signal processing applications, the FFT is a
core computational component. However, few applications
cannot manage a huge memory space for arriving FFTs. While
memory usage is important for specification of hardware,
memory accesses also account for a significant portion of
computation time. These observations from the literature
insisted us to include memory usage as one of the criteria in
deciding the effectiveness of the various FFT algorithms.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 10 | Oct 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1489

Table -3: Memory Requirements

Algorithm
Memory Requirement

(Bytes)

RAD2 72240

RAD4 72536

SPRAD 72508

4. CONCLUSIONS

 The amount of computation is graphically given below.
The different arithmetic are compared.

Chart -1: Amount of Computation

For Shift operations, RAD 4 algorithm is best option if the
constraint is number of computations.

The pace of the computation reveals that SPRAD algorithm is
best among the three.

Chart -2: Pace of Computation

The memory requirements are distributed equally for all the
three algorithms.

Chart -3: Memory Requirements

REFERENCES

[1] Manish Sone, Padma Kunthe, “A General comparison of
FFT algorithms”, Cypress Semiconductors

[2] J.W. Cooley and J.W. Tukey, (1965), An Algorithm for
Machine Computation of Complex Fourier Series,
Mathematical Computation, vol. 19, pp. 297-301. 2. R.N.
Bracewell, (1985), The Hartley Transform, Oxford Press,
Oxford, England.

[3] R.N. Bracewell, (1984), Fast Hartley Transform,
Proceedings of IEEE, pp. 1010-1018.

[4] H.S. Hou, (1987), The Fast Hartley Transform Algorithm,
IEEE Transactions on Computers, pp. 147-155,
February.

[5] P. Duhamel and H. Hollomann, (1984), Split Radix FFT
Algorithm, Electronic Letters, vol. 20, pp. 14-16, January

[6] C.S. Burrus and T.W. Parks, (1985), DFT/FFT and
Convolution Algorithms: Theory and Implementation,
John Wiley and Sons, New York, NY, USA.

