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Abstract – Coordinates-based mechanisms have proven to be 
useful in a communication-to-communication architecture to 
predict Internet network route, even more so than the already 
existing ID Maps scheme. One such mechanism has been 
analyzed known as Global Network Positioning (GNP) to 
provide insight on a current state of the art technology in 
network distance prediction. Global Network Positioning 
instantiates a virtual geometric space by applying coordinates 
to nodes in a network, coordinates are computed by utilizing 
an objective function. A set of landmark hosts are first 
deployed into the geometric space to implement a set of 
reference points for any newly discovered host. Hosts also 
maintain their own coordinates, making it accessible to 
retrieve inter-communication network distance upon 
discovering each other by utilizing a route function. The 
variables associated with GNP must be tweaked to maximize 
efficiency. Through performed experiments using PlanetLab 
[1], a service that allows access to hosts at multiple research 
institutions across the globe, the factors that affect GNPs 
performance is analyzed. 
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1. INTRODUCTION  
 
As communication-communication file sharing continues to 
grow in popularity ever since its debut over a ago, with such 
programs as Napster and Lime-wire, a need for predicting 
accurate network distance has emerged. A client’s ultimate 
goal within such applications is to seek for maximum 
available bandwidth between its self and its peers that 
contain the desired files to guarantee optimal transfer of 
data. Path optimization or other measurements of distance 
within a network is a somewhat impractical means of 
optimizing a clients bandwidth between peers; this approach 
becomes too costly in terms of speed and processing. Many 
efforts currently exist to effectively apply coordinates to a 
network or accurately predict network distance such as 
HTTP [8] or the Triangulated Heuristic. Some schemes are 
used more frequently than others while some may be just 
considered not feasible for real use. IDMaps is a state of the 
art system, where special HOPS servers are deployed, 
specifically utilized for the IDMaps scheme. HOPS servers 
hold a topological map of the net, a series of inter-
communication measurements that are stored and may be 
retrieved by querying hosts for a prediction of distance 
between two nodes. Unfortunately, a few primary problems 
existed within the infrastructure of the scheme that needed 

to be addressed. The distance between hosts x and y is 
defined by the distance between x and its nearest Tracer T 1 
plus the distance between y and its nearest tracer T 2, plus 
the shortest path between T 1 and T 2 [3][5]. This method 
presents a major flaw in accurately predicting inter-host 
distance. IDMaps constantly over-predicts the amount of 
distance between two hosts in a communication –
communication  network because it relies on Tracers to be 
close enough to a host so that a reasonably exactly 
prediction of network is possible. Like ID Maps other 
schemes carry similar problems of over prediction which 
was ultimately improved upon with GNP.  
 

 
 

Fig. 1. An implementation of an IDMaps scheme 

 
2. NETWORK DISTANCE PREDICTION BY MATRIX 
FACTORIZATION 

 
This passage formulates the setback of consolidate distance 
of impossible feats by tricks abracadabra as matrix closing 
and describes its decree by matrix factorization. We 
furthermore provide a homogeneous look of antithetical 
approaches to absorb distance necromancy, the insights of 
which handle a unified optimization framework.
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A. Problem Formulation 
 
Assuming n nodes in the join, a n_n eclipse matrix is 
constructed mutually sprinkling distances during nodes 
measured and the others unmeasured. Denote D the 
measured top matrix by the whole of dij the measured 
eclipse from node I to node
j and ^D the predicted outstrip 
matrix by the whole of ^ did the predicted transcend 
computed from some function.
 
 
Given the after notations, absorb distance illusion can be 
viewed as a matrix cessation problem that estimates the 
missing entries in D from a tiny number of met with entries. 
Its resolution generally amounts to minimizing a loss 
function of the following form 
 
                L(D, ^D, W) =  wij l(dij ; ^ dij);           (1) 
 
where W is a weight matrix with wij taking values between 0 
and 1. In a simple case, we = 1 if did is measured and 0 
otherwise. Note that if the eclipse measurements are RTTs, 
once dji = dij as RTTs are necessarily symmetric. 
Consequently, wji = wij as dji and dij is, in turn, both met 
with or both unknown.
 
 
l is a loss function that penalizes the difference between an 
estimate and its desired or true value. The most commonly 
used loss function is the L2 or square loss function,
 
 
                l(d; ^ d) = (d � ^ d)2:                           (2) 
 
We will discuss other loss functions in Section V. 

B. Low-Rank Approximation and Matrix 
Factorization 
 
Additional constraints are needed to solve the matrix 
completion problem in Eq. 1. A common approach is to 
constrain the rank of the approximate matrix ^D so that 

              Rank(^D ) = r;                                         (3)  

where r _ n for D of size n _ n  
 
The assumption in this low-rank approximation is that the 
entries of D are largely correlated, which causes D to have a 
low effective rank. To show that it holds for our problem, 
Figure 3 plots the singular values of two RTT matrices. It can 
be seen that the singular values of both matrices decrease 
fast as the 10th singular values are 5:7% and 2:9% of the 
largest ones respectively, indicating strong correlations in 
them. The low-rank nature of many other RTT datasets has 
been previously reported in.
 
 
Directly finding ^D by minimizing Eq. 1 subject to Eq. 3 is 
considerably difficult due to the rank constraint. However, as 
^D is of low rank, we can factorize it into the product of two 
smaller matrices, i.e.,  


      ^D= XY T ;                                          (4) 

where X and Y are of size n _ r. Therefore, we can get rid of 
the rank constraint by replacing ̂ D by XY T in eq. 1, and then 
look for X and Y instead by minimizing 

      L(D;X; Y;W) = Xn i;j=1 wij l(dij ; xiyTj );    (5) 

where xi is the ith row of X, yi is the ith row of Y, and xiyT j = 
^ dij is the estimate of dij. Note that the factorization in Eq. 4 
has no unique solution as 


      ^D= XY T = XGG1Y T ;                             (6) 

where G is an arbitrary r_r invertible matrix. Thus, replacing 
X by XG and Y T by G�1Y T results in the same ^D 
 

 

 
Fig. 3. The singular values of an RTT matrix of 2255_2255, 
extracted from the Meridian dataset [30] and called 
"Meridian2255", and of an RTT matrix of 525 _ 525, 
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extracted from the P2psim dataset [30] and called 
"P2psim525". The singular values are normalized so that the 
largest singular values of both matrices are equal to 1.
 
Generally, the class of techniques to solve the low-rank 
approximation is matrix factorization. When D is complete, 
analytic solutions can be found by using singular value 
decomposition (SVD) [31]. With missing entries, the 
factorization is usually done by iterative optimization 
methods such as Gradient Descent or Newton algorithms 
[32]. Note that additional constraints can be imposed in eq. 
5. For instance, the entries of X and Y can be required to be 
non-negative in order to recover a nonnegative matrix, 
leading to the nonnegative matrix factorization (NMF) [33].
 

 
C. Incorporation of the Regularization 
 
Matrix completion by matrix factorization suffers from a 
well-known problem called overfitting in the field of 
machine learning [34]. In words, directly optimizing eq. 5 
often leads to a “perfect” model with no or small errors on 
the training data while having large errors on the unseen 
data which are not used in learning. The problem is more 
severe when D is sparse or when r is large. 
 
A common way to avoid overfitting is through regularization 
that penalizes the norms of the solutions, resulting in the 
following regularized loss function, 
 
L(D;X;Y;W; _) = Xn i;j=1 wij l(dij ; xiyT j ) + _ Xn i=1 xixTi + _ 
Xn i=1 yiyT i ;                                 (7) 
   
where is the regularization coefficient that controls the 
extent of regularization? Besides avoiding overfitting, the 
regularization also helps overcome the drift of the solutions 
due to the non-uniqueness of the factorization (see eq. 6), 
which often leads to the overflows of the solutions. Among 
the infinite number of pairs
 
 

 

Fig. 4. Design of landmark-based, the left and right 
decentralized,systems for  distance vector prediction. The 
squares are landmarks and circles are ordinary node. The 
directed path from node I to node J means that node I probe 
node J and therefore wIJ = 1. of X and Y which produce the 
same ̂ D, the incorporation of the regularization will force to 
choose the pair with the smallest norm.
 
 
D. A Unified View of Approaches to Network Distance 
Prediction Although near to one heart approaches to became 

lost in eclipse illusion vary by adopting disparate models 
including Euclidean embedding and matrix factorization and 
by adopting disparate architectures of as a choice landmark-
based or landmark-less and by means of this decentralized, 
these seemingly antithetical approaches bodily optimize the 
same field in Eq. 1 nonetheless differs unattended in the 
stage set of wij and in the associated distance functions to 
speculate ̂  dij . Setting of wij: For landmark-based methods, 
as bodily paths, mid landmarks are measured and deformed 
nodes seize only the landmarks,
 
 
wij = 
( 
1 if node j is a landmark 
0 otherwise 
) 
For decentralized methods, as each node equally probes 
a number of nodes, 
wij = 
( 
1 if node I probe node j
 
0 otherwise 
) 
 
Figure 4 illustrates the architectures of landmark-based and 
decentralized systems. Distance functions to calculate ^ dij: 
For matrix factorization, as described above, 
 

                        ^ dij = xiyT j ;                                (8) 
 
For Euclidean embedding, the Euclidean distance is defined 
as 

                 ^ dij = q (xi � xj)T (xi � xj);               (9) 
 
where xi and xj are the Euclidean coordinates of node I and 
node j. The above insights suggest a unified framework to 
treat and to solve equally network distance prediction under 
different models and different architectures. For instance, 
the decentralized matrix factorization algorithms proposed 
in the following sections can be used to solve both Euclidean 
embedding and landmark-based systems with little 
modification. 

 
3. EXPERIMENTS AND EVALUATIONS 
 
In this section, we evaluate DMF3 and compare it with two 
popular NCS algorithms: Vivaldi and IDES. The former is 
based on metric space embedding, while the latter is also 
based on matrix factorization but uses landmarks. All the 
experiments are performed on two typical disclosure sets 
collecting trustworthy Internet measurements: the P2psim 
data exist which contains the measured distances 
surrounded by 1740 Internet DNS servers, and the Meridian 
data apply which contains the measured distances during 
2500 nodes. While DMF bounces in principle act with regard 
to asymmetric eclipse matrices, in our demonstrate, we took 
di,j = dj, I and bounded these distances as the half of the 
round-trip-time mid nodes i and j. The agnate assumption is 
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adopted in Vivaldi and has the biggest slice of the cake of to a 
great extent simplifying the implementation of the 
algorithm, as reflection one-way restrain is abstract in 
practice. In the simulations, we randomly selected a node 
and updated its coordinates at each step. An iteration of a 
simulation is defined by a fixed round of node updates. Since 
Vivaldi updates its coordinates with respect to only one 
neighbor in contrast to DMF that does it with respect to all 
neighbors, an iteration in Vivaldi is defined by n×k node 
updates whereas in DMF an iteration is n node updates, 
where n is the number of nodes and k is the number of 
neighbors. In doing so, we ensure that, on average, all nodes 
have a chance to update their coordinates with respect to all 
neighbors. Note that IDES is not an iterative method. The 
coordinates of the nodes are unchanged. We recognize them 
from that day forward classical criticism criteria.
 
 
– Cumulative Distribution of Relative Estimation Error 
Relative Estimation 
Error (REE) is most zoned as 
REE =| ˆ di,j − di,j | 
                    di,j 
 
– Stress deciding the complete fitness of the embedding is 
bounded as
 
stress = Pi,j (di,j − ˆ di,j)2 
                       Pi,j di,j2 
– Median Absolute Estimation Error (MAEE) is defined as 
             MAEE = mediani,j(|di,j − ˆ di,j |). 
 
Our DMF algorithm utilizes only a small % of the route 
measurements in the datasets to estimate the coordinates of 
the nodes, but the evaluation of the above criteria is done 
using all distance measurements. 

 
4. CONCLUSION  

 
Recent studies symbolize that the fascination quality of 
existing of impossible feats by tricks abracadabra 
mechanisms boot be incapable from the debate perspective. 
This handout has uncovered that interim it might be used to 
enliven the foreboding quality over intelligent landmark 
letter from uncle sam, it is unclear at which point to 
engineering the levy procedure in sending up the river to 
corroborate good foreboding quality from one end to the 
other all has a jump on ranges. Although choosing nearby 
nodes as landmarks can result in higher prediction accuracy 
for short links, longer links may suffer significantly degraded 
prediction accuracy.
 
 
In light of this problem, we have proposed a hierarchical 
approach for network distance prediction. The hierarchical 
prediction leverages multiple coordinates at multiple 
distance scales. The right scale is chosen for predicting the 
target distance. We study two hierarchical prediction 
schemes. The first scheme leverages a shared landmark 
hierarchy. The breath scheme allows malleable landmark 
assignment at companionless nodes and the "hierarchy" is 

marked by constantly smaller top scales. Experiments by the 
whole of Internet intensity traces bring to light that the 
hierarchical act outperforms the hybrid landmark 
assignment scheme: swiftly links cut back be predicted by 
the whole of higher accuracy by all of the little violence on 
the mind reader or daydream links.
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