
          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 05 Issue: 02 | Feb-2018                      www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 6.171       |       ISO 9001:2008 Certified Journal       |        Page 954 
 

Real Time Code Collaboration with Source Control 
 

Aditya Kurhade1, Arun Nair1, Omkar Dubas1, Suyog Gadhave1, Prof. Aruna Kamble2 

 

1Student, Department of Computer Engineering, BVCOE, Navi Mumbai, MH, India 
2Professor, Department of Computer Engineering, BVCOE, Navi Mumbai, MH, India 

---------------------------------------------------------------------***---------------------------------------------------------------------
Abstract – Real-Time Collaboration of code between the 
members of the team/s is the gist of our project. First, let’s 
give the part collaborative meeting meaning, your 
teammate sees the area of the workspace in their person in 
control of the paper. This means your teammate can read 
the code you shared without having to copy a repository or 
put in a position of authority any dependent relations your 
code is dependent on. The development of a software using 
the concept of operational transformation to manage the 
versions created by the team members in a single piece of 
code. The collaborative part lets you give part the area of 
the code, so you get a short time, as a two-way working 
mechanism. Each of you can use a plugin for making or 
putting the right things that you have made for a person so 
that you have the freedom to create the development 
environment. You cannot dependently make an observation 
of a question under discussion without stepping on each 
other. There is no need for handing-off control or amount 
with latency. Do the work together with the shared 
environment only when you need to.  
 

1. INTRODUCTION 
 
Consider a scenario where a software development has to 
be made done and the whole team collaborates to make it 
a success. Here the advent of GitHub, a Version Control 
System (VCS), came into being for helping developers for 
such a collaboration. In a VCS, a single branch is created 
which can be further divided into more branches and then 
these branches are merged into a single branch, but this all 
requires the code being committed to the repository and 
after which the code is being accessible to every other 
team member. But When multiple developers are 
collaborating on the same project, it happens a lot that the 
modules on which they are working are often 
interdependent and require a real-time sync to debug and 
run the respective modules. Also, the Version Control 
System is quite precise and hard for new users, which 
often results in conflicts and the files become inconsistent 
from the view of project.  
 

1.1. CHALLENGES 
 

The idea itself at the beginning of 2016 was challenging 
itself. But as being a part of the development team made 
us realize the effort that can be saved if a common ground 
for sharing is created where instant sharing is possible.  
 

1.1.1. Firstly 
 
We have attempted to make a system where the computer 
is the chief and the persons for whom one does work are 

persons as property. This system is where the clients fight 
for the right of being taken first and be given agreement 
the right to a chief over other persons for whom one does 
work.  
 
But this system majorly plays a part on the base of facts 
rate get moved from one position to another which can 
(make, become, be) different from place to place and this 
leads to loss of sensitive knowledge for computers in this 
process. 
 

1.1.2. Secondly 
 

Now, we have attempted to make come into existence a 
true time net structure, where applications lead to 
produce events, which have changed state, as well as on 
which particular operator does its operation furthermore.  
PUSHER, made in this example, uses narrow ways in 
which to make distribution events, has a need to make one 
log in order for ones doing when such instances are fired. 
For almost any user-enacted event which makes use of a 
keyboard, selections, syntax-changes, copy-pastes, saves, 
and so on we will let one easily Register 1 a call-back in 
order to Execute it.  
 
So similarly, for instances a web socket puts it into motion 
(when a person working in a group sorts, shares a 
teaching book record and so on.), pusher makes it simple, 
not to put it one’s hands on a single event such that to 
transfer their control to the owner.  
 

1.1.3. Thirdly 
 

This was the case when the comparing the two sets of 
data. This was the case when we were trying to insert a 
piece of code a particular position was utilized but when 
we were trying to replace the text with a modified text 
version from a different user, the range of the values from 
the edit turned out to falsely reverted back.  

 

2. ENVIRONMENT 
 
The plug-in we have developed is intended to preserve the 
original sanctity of a developer and feed the required 
necessities. The plug-in is an open source plug-in which 

 
The use of delete function also had a similar issue of 
returning a false range of the text edited. There were 
instances when the code was in an infinite loop due to this 
range value for the edited text which would crash the 

entire window.  



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 05 Issue: 02 | Feb-2018                      www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 6.171       |       ISO 9001:2008 Certified Journal       |        Page 955 
 

allows no restriction of what so ever manner in matters of 
coding in any language.  
 
A common area of a folder showcases that folder is open. 
But when is open is cannot be termed as common area. 
The common area provides support for listening to events 
and discovering files.  
 
The common area under which the folder is shared can be 
accessed by the members of the team by inputting the 
team id as well as the teammates name. On every edit, the 
common environment is being updated with the text being 
typed.  
 

maintained. The file and directory paths are managed 
differently on different Operating Systems. On Unix and 
Linux systems the paths convention is same. But on 
Windows or NT operating systems, the convention is 
totally different. This problem is well handled by the URI, 
i.e. Uniform Resource Identifier. It not only handles the 
diversity between different Operating Systems but also 
provides solution for Servers, Hosts, etc.  
 

4. SOURCE CONTROL  
 
In software development, version control systems (VCS) 
provide branching and merging support tools. Such tools 
are popular among developers to at the same 
time/together change a code base in separate lines and 
(cause agreement with) their changes automatically 
later/after that.        However, two changes that are correct 
independently can introduce bugs when merged together. 
We call (related to the meaning of words) merge conflicts 
this kind of bugs. 
 
Without source control, a user is eager to keep versions of 
the same file. This is not beneficial as one may modify the 
wrong replica of the file and thus leading to loss of work.   
So basically, source control’s work flow manages the chaos 
created above in their own development process.  
 
With every version created, a bug is fixed or a new update 
is provided. This thus synchronizes the versions created 
and manages the conflicts.  
 
 Now that data is being synced between multiple clients, 
the concern raises, what is the contribution of each user to 
the shared file. The source control system is integrated 
with each users’ system and works independently. The 
task of source control is to check for the file changes solely 
on the current system only and not the remote systems 
whatsoever.  
 
Since the data change occurred on the file on the host 
computer (host computer is the computer which initiated 
the file sharing channel) may have edits from remote users 
too. Similarly, the remote users who are making these 
changes will also get changes reflected on their system 
too, which will, in turn, make the source control system 
detect changes which are not completely made by that 
user.  
 
So, there is need to acknowledge these changes with 
respect to each user. This can be done by analysing the 
data coming from each socket packets containing the 
changes with the users’ identity who has made changes.   
The above task will definitely take more work as it will 
account for calculations at each host. For example, if 4 
users are in the collaboration session, but are not 
contributing anything at all. Still, the calculations will take 
place at each host for no reason. This can avoid by simply 
accounting for the changes for current host only. The host 
is responsible for keeping track of all changes for the 
respective host only.  

3. INTERACTION WITH ENVIRONMENT  
 
The integration with environment is an important aspect 
as it gives the very first idea that why real-time file or 
folder sharing is completely different from real-time file 
editing.  
 
Sharing of files or syncing them across multiple personal 
computers, servers, hosts, etc. requires to directly write 
the chunks of data (mostly bytes) to a file-system, if it’s a 
personal computer or workstation; server, path if it’s a 
server; IP address, if it’s a remote host. Whereas in real-
time file editing the file data is not only shared but it is 
continuously accessed by the user.  
 
This continuous access integration requires 
environmental privileges and direct subscription with 
whom user is interacting with.  
 
To achieve this type of ease of access the file on the file-
system cannot be accessed directly. It needs to be accessed 
via the environment, the file is being edited with. Most of 
the editors use their own buffer memory to store changes 
made in the file by the user. These changes are kept in 
buffer until the file is not being saved by the user.  
 
The save operation simply replaces the current buffer with 
the actual data in the file on the file-system. But before this 
save operation completes, when the editor environment 
accesses the file-system and checks if the version of file on 
the file-system is exactly the same as it was before the 
user started making changes in the file.  
 
If the versions are different the user needs to take action, if 
the file edited by him/her should be replaced or the new 
version that has just occurred on the file-system is to be 
preserved.  
 
This self-version of the file-system requires an extra effort 
to the user which cannot be neglected easily. To avoid this 
the files need not to be directly synced with the file system 
itself. They should be synced with the environment editor 
buffer.  
 
Other than the management of buffer of editor and the file 
on file system, the consistency of all paths and their 
hierarchy with respect to the root of file system is to be 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 05 Issue: 02 | Feb-2018                      www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 6.171       |       ISO 9001:2008 Certified Journal       |        Page 956 
 

The source control can be then submitted with the 
changes which the current user has made and committed 
as soon as the session is completed. Finally, the commits 
from each user need to be shared with each user which 
then can be reflected the source control at each host.  
 

5. DATA FLOW  
 
Connection: Connections between two or more 
collaborators are done by using unique session key (this 
session key is unique for every project or file on which 
team of collaborator is going to work). Users have to store 
this key to access respective document.  

 
 
How files Are stored? As every project will have unique 
session key every file in the project is stored under 
’SessionKey: RelativePath’. RelativePath gives the path of 
the file from project folder (e.g. project/file or 
project/folder/file). In this way context of each file is 
stored on the server. This is how the connection is 
established, as we can see now ’A’ and ’B’ are in sync with 
file 1 changes now let us see how changes from each client.  
 
How changes flow? when changes are created in the file 
by any client the change event is created and these 
changes are passed on to the server, here one thing needs 
to be noted down is that the context of a file is the 
consistent version and at the end, all the clients will have 
this version maintained in their editors.   
 

 
 

As all the clients are in sync with the context, when the 
context changes the respective changes occur in all the 
synced clients.  When changes are pushed by any client 
through his/her editor these changes are examined by the 
server following that server performs Operational 
Transformation between changed text and context 
previous changes which results in the consistent data and 
this data is overwritten in the context and the same thing 
is synced to all other connected clients through their 
editor. 
 

6. DATA CONSISTENCY  
 
The main concern that we have to solve when it comes to 
real-time code collaboration is the consistency of the data. 
there have to be specific protocols which need to be 
followed:  
 

6.1. First Approach (Using real-time 
databases and emit changes using real-
time database protocol) 

 
When we used a real-time database to control 
concurrency major problem was we didn’t have any access 
to database servers which leads to very limited operations 
and controlling concurrency with just those provided 
operations was a troublesome job to do which also 
affected our speed of collaboration in some way, so 
designing protocol on real-time database services was not 
a great choice.  
 

6.2. Second Approach (Using Just sockets) 
 
Using sockets made one benefit here that then we had 
better control of servers as events are emitted and they 
are solely handled by server this approach did solve most 
of the equations for us but writing protocol on our own 
without having any reference to theoretical research 
would have taken ages to create what we want.  Avoiding 
loops of events, maintaining versions of code to merge 
them into forming converged code these problems have to 
be solved with proper protocol our main aim here is not to 
create concurrency control algorithm but to use this 
algorithm in some software or editors.  So the best 
algorithm that we could find was Operational 
Transformation(one which Google uses)  Now to explain 
how we used this protocol in our case consider two clients 
(they need not be clients always one of them can be server 
or both can be servers)’A’ and ’B’, also consider there is 
data ’PQR’ written on both clients’ side. Here Client A 
insert ’X’ at position 2 and client B delete letter at position 
1. These are the methods we used before using Operation 
Transformation.  
 
Method 1: Merely transforming change events to another 
client without any operation on it here server was just 
listening to events and pushing it to other clients which 
are connected in this case, you can clearly see convergence 
is completely violated both the clients are not in a 
consistent state.  



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 05 Issue: 02 | Feb-2018                      www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 6.171       |       ISO 9001:2008 Certified Journal       |        Page 957 
 

 
 
Method 2: Putting order and clock in it, using this we 
thought that consistency will be maintained so we tried to 
bind every event with time-stamp and made sure that they 
execute in that sequence only which is handled by server, 
following were the results.  We were able to make data 
consistent that is why convergence is successful but wait, 
here client A’s decision of putting ’X’ after ’P’ and before ’Q’ 
is completely violated data is consistent but violating 
decision was never a plan, every decision made by clients 
has to be fulfilled.  
 

 
 
Method 3: Finally, we got to answer to each and every 
hard question using OT, following way we did it. So by 
using above concurrency signed agreement between 
nations persons of representative and decision is said 
(thing is true).  
 

 
 

7. CONCLUSION  
 
The Implementation of the real-time application for 
collaboration i.e. RCE is a web application that helps 
programmers to create and see the result of the executed 
source code by terminal, collaborate in real-time with 
other programmers by chat or invite to join the same 
project and manage the project such as import, export, 
shared projects. RCE has the main features: provide 
workspace to make, execute and build the source code, 
real-time collaboration, chat, and build the terminal.  
 

8. REFERENCES  
 
[1] Delta Impact Finder: Assessing Semantic Merge 

Conflicts with Dependency Analysis.  

[2] Version Control Systems Stefan Otte Computer 
Systems and Telematics Institute of Computer Science 
Freie Universitat Berlin, Germany.  

[3] The Semantics of Version Control Wouter Swierstra1 
and Andres Loh 2 1 Universiteit Utrecht.  

[4] VeCVL: A Visual Language for Version Control Nathan 
W. Eloe, Denise M. Case School of Computer Science 
and Information Systems Northwest Missouri State 
University.  

[5] EVOLUTION OF VERSION CONTROL SYSTEMS 
Comparing CENTRALIZED against DISTRIBUTED 
Version Control models CARL FREDRIK MALMSTEN 
Department of Applied Information Technology IT-
University of Gothenburg malmstec@ituniv.se 
Supervisor BILL SULLIVAN Department of Applied 
Information Technology IT-University of Gothenburg.  

[6] An O(ND) Difference Algorithm and Its Variations, 
Department of Computer Science, University of 
Arizona, Tucson, AZ 85721, U.S.A, EUGENE W. MYERS.  

[7] JavaScript diff library with support for visual, HTML-
formatted output, 
[https://www.npmjs.com/package/text-diff].  

[8] Pusher Docs [https://pusher.com/docs/].  

[9] Visual Studio Code Extension API Documentation, 
Microsoft Corporate 
[https://code.visualstudio.com/docs/extensionAPI/].  

[10] Firebase Documentation 
[https://firebase.google.com/docs/].  

[11] Node JS Documentation and NPM Library 
[https://nodejs.org/en/docs/]  


