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Abstract - Channel estimation in an Orthogonal Frequency 
Division Multiplexing (OFDM) based broadband system, 
over a selective channel is one of the challenging task. Block 
Sparse Bayesian learning was proposed to address the 
challenges, but it has resulted in considerable Inter Carrier 
Interference (ICI) and Inter Symbol Interference (ISI).Thus 
Bayesian learning using Zero Forcing technique is proposed 
in this work for OFDM receiver operating over fast time 
varying channel. This technique has excellent channel 
estimation performance even with a very small number of 
channel expansion coefficients employed in the algorithm, 
resulting in substantial reduction of the computational 
complexity along with reduced symbol error rate, moreover 
it overcomes ICI and ISI in this system. 
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1. INTRODUCTION  
 
OFDM systems operating over fast time-varying channels 
experience orthogonally loss between all system 
subcarrier frequencies. As a result, the observed signal is 
affected by inter carrier interference (ICI), which can 
severely degrade the receiver performance. A wide range 
of algorithms have been proposed in the literature to 
suppress or mitigate ICI. It typically iterate between 
channel estimation, ICI cancellation and data detection. 
Among these we mention receivers implementing 
decision-feedback equalization (DFE), such as that 
proposed in which performs channel estimation and ICI 
cancellation in the frequency domain.  Similar modeling is 
employed in to design a channel estimator using 
approximate message passing techniques. At each 
iteration the algorithm computes the hard estimate of the 
data symbol modulating a subcarrier, after having 
canceled the ICI estimated at the previous iteration .Using 
hard symbol estimates, and hence not accounting for 
uncertainties in the symbols decisions, is detrimental to 
the performance of the receiver when it operates over 
very fast time-varying channels. To overcome the above 
shortcomings, an algorithm that iterates between 
estimation of the channel time-varying weights and noise 
precision, ICI cancellation, detection and decoding of the 
signals in one transmission frame. The algorithm is 
developed using two main tools: block-sparse Bayesian 
learning (BSBL) which is a Bayesian formulation of 
compressed sensing and the mean-field belief-propagation 

(MFBP) framework appertaining to variation Bayesian 
inference. The BSBL methodology was recently applied to 
other communication problems such as estimating MIMO 
channel responses or channel responses which exhibit 
delay clustering while MF-BP was previously used for 
designing iterative receiver algorithms, even though 
considerable amount of ICI and ISI are encountered. The 
proposed algorithm includes zero forcing method. Zero 
forcing ensures that the interferences from other users are 
forced to zero at each receiver by eliminating all inter-user 
interferences. Simulation results show that our receiver 
algorithm outperforms selected reference algorithms and 
achieves BER performance higher. 

 

2. SYSTEM MODEL 
 
An OFDM transmission of B symbols is considered. During 
the ith transmission interval, i ∈ [B − 1], a vector which 
contains ui ∈ {0, 1} K of information bits is encoded with a 
code rate R and interleaved into the vector ci = [(c (0) i ) T, 
(c (ND−1) i ) T] T with entries c (k) i ∈ {0, 1} Q, k ∈ [ND − 
1], RNDQ = K. The code vector ci is modulated onto a 
vector of ND complex symbols that are interleaved with 
NP pilot symbols producing the symbol vector xi ∈ C N , N 
= NP + ND. The mth entry xi [m] of xi is a pilot symbol if m 
∈ P and a data symbol if m ∈ D 1 . The vector xi is passed 
through an inverse DFT block to yield the vector si to 
which a µ-sample long cyclic prefix (CP) is prepended. A 
frame of B OFDM symbols is sent over a time varying 
channel with response composed of L˜ multipath 
components: g˜(t, τ )= h˜ l(t)δ (τ − τ˜l), where h˜ l(t) and τ˜l 
model the time-varying gain and delay of the lth multipath 
component . The receiver observes a signal which is the 
convolution of the transmitted signal and the TV-CR g˜(t, τ 
) corrupted by additive white Gaussian noise. This signal is 
lowpass filtered sample.The remaining samples vectors 
that are passed through a DFT block, yielding  yi = H˜ ixi + 
wi =diag [H˜ i ]xi + ˜zi + wi .  The vector  ˜zi ∈ C N collects 
the ICI at all subcarriers. 
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2.1BLOCK DIAGRAM 
 

 
Fig: Block diagram of OFDM receiver 

 
3. PROPOSED ITERATIVE RECEIVER 
 
The orthogonal frequency-division multiplexing systems 
with  ICI  due to insufficient cyclic prefix and/or temporal 
variations causes ISI and ICI. Therefore, two techniques 
are used for equalization of ICI. The first, called block-
sparse Bayesian learning (BSBL)which is a Bayesian 
formulation of compressed sensing and the mean-field 
belief-propagation (MFBP) framework appertaining to 
variation Bayesian inference. An algorithm that iterates, 
channel time-varying weights and noise, ICI cancellation, 
detection and decoding of the signals. Genie aided channel 
estimator (GAE) method access, the channel sparsity and 
iteratively canceling ICI and performs estimation with 
known matrix and noise variance also Compares with the 
benchmark receivers. 
 
Zero forcing beamforming technique is used  to reduce the 
ICI. For beam forming, preceding design are employed. 
Pre-coding is employed to separate the user signals, 
thereby mitigating multiuser interference and increasing 
the system capacity. In a multiuser system characterized 
by interferences, the implementation of an appropriate 
precoding method can considerably improve the system 
performance.. Zero-Forcing technique ensures that the 
interferences from other users are forced to zero at each 
receiver by counseling all inter-user interferences. The 
multiuser interferences are totally eliminated by 
projecting each stream onto the orthogonal complement of 
the inter-user interference. It takes into account the inter-
user interference but neglects the effects of noise. 

 
 

Fig: Standard Antenna 
 

 
 

Fig : Zero forcing beam forming 
 

4. PROPOSED RECEIVER ALGORITHM 
 
To enforce the block sparse structure, we employ BSBL. 
BSBL is a Bayesian framework for compressed sensing 
which “explores and exploits the intra-block correlation” 
i.e. makes use of the correlation between the entries of a 
block to retrieve block-sparse variables. This is 
accomplished by imposing a prior distribution for the 
variable of interest which encourages block sparse 
estimates. Due to the significant Doppler shift, which 
results in a time-frequency doubly-selective (DS) channel. 
The DS channel features a large number of channel 
coefficients, which introduces inter-carrier Interference 
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(ICI) and forces the need for allocating a large number of 
pilot subcarriers. algorithm is based on the space 
alternating generalized expectation maximization (SAGE) 
technique which is particularly well suited to multicarrier 
signal formats leading to a receiver structure that also 
incorporates inter channel interference (ICI) cancellation. 
The algorithm define the set of variable nodes connected 
to the factor node f as N (f), and similarly, the set of factor 
nodes connected to a variable node θ as N (θ). Following 
the MF-BP framework we divide the set of factor nodes 
into two disjoint sets. The MF (BP) subgraph contains the 
nodes of the factor in the set FMF = {fp, fn, fa, foi } FBP = 
{fmn,k , fcn , fbn,v }.It estimates the BEM 
coefficients,retrieving the block sparse 
structure,estimating the noise precision, canceling ICI and 
decoding. The implicit ICI cancellation: before updating 
µi,dk , the ICI caused by all xi [dj ], dj ∈ D, dj 6= dk is 
removed from the received signal yi , and a nearly 
interference-free signal  is employed instead. Propagating 
BP messages through nodes fmi,k and fci corresponds to 
classical demapping and decoding respectively. The model 
of the approximate channel matrix Hi , for a given 
selection of the basis functions Ψ, the only unknown 
variables are the vectors αl used to model hl(t). With this 
approximate model, we circumvent the explicit estimation 
of the multipath delays τ˜l , l ∈ [L˜ −1] and the number of 
multipath components L˜ in g˜(t, τ ). Instead, the DL entries 
of α need to be estimated. Since only a few hl(t), l ∈ [L−1] 
are expected to be non-zero, we postulate that Hi can 
approximate H˜ i well with only a few non-zero vectors αl . 
This implies that the vector α will have few non-zero 
entries occurring in blocks of length D, i.e. the vector α is 
block-sparse. Assuming a block-sparse α enables the use of 
compressed sensing tools to retrieve its entries. 
 

 
Fig: Benchmark receivers. 

 
4.1. SOFTWARE SPECIFICATION 
 
MATLAB is a high-performance language for technical 
computing. It integrates Computation, visualization, and 
programming in an easy-to-use environment where 
Problems and solutions are expressed in familiar 
mathematical notation. MATLAB is an interactive system 
whose basic data element is an array that does not require 

dimensioning. This allows you to solve many technical 
computing problems, especially those with matrix and 
vector formulations. Also it is a flexible language 
compared to others, because it is easy to evaluate the 
performance of the system by analyzing the capacity, 
effective rate, outage probability, BER,etc. As it deals with 
matrix it can have an enough solution space with a pool of 
inputs. Hence we implement Matlab in Communication 
projects. 

 
5. GRAPH 
 

 
 

Fig:BER VS SNR 
 

 
 

Fig:Average MSE vs SNR. 
 

It describes about various iterative receiver such as GAR 
(Genie Aided receiver),RxBEM-sparse(Block sparse 
Bayesian learning),RxAR(Autoregressive receiver) and 
ZF(Zero forcing) methods which reduces Inter carrier 
Interference. Average Mean square error of the channel 

BENCHMARKER IMPLEMENTATION 

RxAR(neglects ICI) A sparse channel estimator 

RxRef-ss and RxRef-spaced 
delays estimates hard 
symbols 

-Modified with iterative 
decoding. 

-Knows  noise variance. 

GAR(genie) 

Cancels ICI. 

 

-perfect channel 
information. 

-knows noise variance. 

RxBEM-sparse -cancels noise. 

ZF(Zero forcing) -cancels ISI,ICI perfectly 
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frequency response versus SNR(Signal to noise ratio) are 
simulated. It describes about various techniques which 
reduces Inter carrier interference and Inter symbol 
interference. Out of those, Zero forcing techniques cancels 
Inter symbol interference and Inter carrier interference 
greater than the previous techniques. 
 

5. NUMERICAL EVALUATION 
 
The number of multipath components L˜ is drawn from a 
Poisson distribution with mean µL˜ . Given L˜, to each 
component l ∈ [L˜ − 1] a random vector (˜τl , zl , ϕl , [ϑl,k, 
ςl,k; k ∈ [M − 1]]) is associated: the delay τ˜l is uniformly 
distributed on [0, µTs]; given τ˜l , the gain zl is a zero-mean 
complex Gaussian variable with variance v0exp(−m0τl); 
the mean azimuth ϕl and the phases ςl,k are drawn from a 
uniform distribution on [0, 2π). Given ϕl , the azimuths 
ϑl,k are drawn from a von Mises distribution with mean 
and concentration κv. We abbreviate the receiver 
implementing the proposed algorithm as RxBEM-sparse. 
For channel estimation benchmarking we use a genie-
aided channel estimator (GAE) which performs LMMSE 
estimation of α with known dictionary matrix and noise 
variance. we observe that the average MSE for all receivers 
exhibits a saturation when they operate in the high SNR 
regime. This behavior is due to the estimation model 
mismatch stemming from the choice of basis, the fixed 
delay grid and the errors in the estimates of the data 
symbols. In particular, RxRef– ss exhibits the highest 
sensitivity to these mismatches as it employs a delay 
vector with Ts-spaced entries. Even though there is still a 
notable gap between the average MSEs of RxBEM-sparse 
and GAE, RxBEMsparse performs very closely to GAR in 
terms of BER outperforming all benchmark receivers. This 
shows that efficient receivers can accommodate some 
errors in the estimation of the channel and still operate 
closely to the optimal performance. Canceling ICI using 
hard symbol estimates proves detrimental to the BER 
performance of both RxRef and RxRef–ss, particularly in 
the high SNR regime. In this case, an algorithm which 
neglects ICI, such as RxAR may be preferred. Zero forcing 
method neglects the noise ,ICI and ISI perfectly. 
 
6. CONCLUSION 
 
Developed a tractable algorithm for OFDM receivers 
operating over fast time varying channel which employed 
BSBL with zero forcing technique. It over comes the task of 
explicitly estimating the delays. As the transmission of 
symbols through a sparse channel at a high data rate 
which results in inter symbol interference (ISI). To reduce 
this effect and ensure accurate decoding of the transmitted 
symbols, zero forcing is implemented. This increases the 
system capacity, reduces complexity of the system. 
Overcomes the task of estimating delays. The receiver 
implementing this algorithm successfully cancels ICI and 
performs greater than block-sparse Bayesian learning. 
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