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Abstract - Road traffic speed prediction is a challenging 
problem in intelligent transportation system (ITS) and has 
gained increasing attentions. Existing works are mainly based 
on raw speed sensing data obtained from infrastructure 
sensors or probe vehicles, which, however, are limited by 
expensive cost of sensor deployment and maintenance. With 
sparse speed observations, traditional methods based only on 
speed sensing data are insufficient, especially when 
emergencies like traffic accidents occur. To address the issue, 
this paper aims to improve the road traffic speed prediction by 
fusing traditional speed sensing data with new-type “sensing” 
data from cross domain sources, such as tweet sensors from 
social media and trajectory sensors from map and traffic 
service platforms. Jointly modeling information from different 
datasets brings many challenges, including location 
uncertainty of low-resolution data, language ambiguity of 
traffic description in texts and heterogeneity of cross-domain 
data. In response to these challenges, we present a unified 
probabilistic framework, called Topic-Enhanced Gaussian 
Process Aggregation Model (TEGPAM), consisting of three 
components, i.e. location disaggregation model, traffic topic 
model and traffic speed Gaussian Process model, which 
integrate new-type data with traditional data. Experiments on 
real world data from two large cities in America validate the 
effectiveness and efficiency of our model 
 

1.INTRODUCTION  
 

1.1 Background and Motivation  
 

ROAD traffic monitoring is of great importance for urban 
transportation system. Traffic control agencies and drivers 
could benefit from timely and accurate road traffic prediction 
and make prompt, or even advance decisions possible for 
detecting and avoiding road congestions. Existing methods 
mainly focus on raw speed sensing data collected from 
cameras or road sensors, and suffer severe data scarcity issue 
because the installation and maintenance of sensors are very 
expensive [56]. At the same time, most existing techniques 
based only on past and current traffic conditions (e.g [9], [54], 
[25], [38]) do not fit well when real-world factors such as 
traffic accidents play a part. 

 
To address the above issues, in this paper we introduce 

new-type traffic related data arising from public services: 1) 
Social media data, which is posted on social networking 

websites, e.g. Twitter and Facebook. With the popularization 
of mobile devices, people are more likely to exchange news 
and trifles in their life through social media services, where 
messages about traffic conditions, such as “Stuck in traffic on 
E 32nd St. Stay away!”, are posted by drivers, passengers and 
pedestrians who can be viewed as sensors observing the 
ongoing traffic conditions near their physical locations. 
Meanwhile, traffic authorities register public accounts and 
post tweets to inform the public of the traffic status, such 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 1: Problem setting. Our goal is to predict the traffic 

speed of specific road links, as shown with the red question 
marks, given: 1) some speed observations collected by speed 
sensors, as shown in blue; 2) trajectory and travel time of OD 
pairs. Note that speeds of passed road links are either 
observed or to be predicted; 3) tweets describing traffic 
conditions. Note that the location mentioned by a tweet may 
be a street covering multiple road links. as “Slow traffic on I-
95 SB from Girard Ave to Vine St.” posted by local 
transportation bureau account. Such text messages 
describing traffic conditions and some of them tagged with 
location information are accessible by public and could be a 
complementary information source of raw speed sensing 
data.  

 
(OD) pair on a map, such services can recommend optimal 

route from the origin to the destination with least time, and 
trajectories can be collected once drivers use the service to 
navigate. Here a trajectory is a sequence of links for a given 
OD pair, and a link is a road segment between neighboring 
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intersections. Correspondently, a trajectory travel time is an 
integration of link travel times, which are related to the real-
time road traffic speeds. Longer trajectory travel time 
indicates that some involving road links may be congested 
with lower traffic speed. Trajectory data is useful for a wide 
range of transportation analyses and applications [49] [9]. 

 
Based on the above observations, where traditional traffic 

sensing data are limited while new-type data from social 
media and map service begin to spring up, our goal is to 
predict the road-level traffic speed by incorporating new-
type data with traditional speed sensing data. To motivate 
this scenario, consider a road traffic prediction example 
depicted in Fig.1. Those links in red question marks are not 
covered by traditional speed sensors, but may be passed by 
trajectories attached with travel time information, or 
mentioned in tweets describing traffic conditions, so their 
speeds can be inferred fusing multiple cross-domain data. 

 

1.2. Challenges 
 
When integrating traditional traffic speed data (e.g. 

sensing data) with new-type data (e.g. Twitter data and 
trajectory data) to predict road traffic speed, technical 
challenges arise due to the characteristic of each data source: 
 
location uncertainty of low-resolution data; tweet data 
and trajectory data are called low-resolution data because 
we cannot directly locate them into specific road links. Most 
tweets have no location tags, so geographic location 
language is the main clue, which however is vague. For 
example, expression like “Stuck in traffic on E 32nd St. Stay 
away!” covers the whole street without precise road 
locations. Meanwhile, travel time of a trajectory is an 
aggregate measure based on the speed of multiple links, 
which may vary widely. Thus a strategy is required to 
disaggregate the data to specific road links;  
 
language ambiguity of traffic description in tweets; the 
expressions depicting traffic conditions are diverse, and may 
denote different speed values. An example is shown in Fig.2, 
which shows the frequency distribution over the degree of 
congestion when people use congestion-related words. 
Meanwhile some words not directly related to traffic may 
also have strong implication to link speed, such as words 
complaining bad weather. Thus a linguistic model is required 
to capture the patterns between discrete descriptive words 
and continuous speed values;  
 
heterogeneity of multi-source data; the data sources have 
diverse properties and latent relations with the road traffic 
speed. For example, tweets possess latent topics which 
cluster based on speed levels, and negative correlation 
existed between trajectory travel time and traffic speed of 
involving links. Therefore a unified framework is re-quired 
to model these properties and aggregate the latent relations 
between heterogeneous data to predict speed synthetically.  

 
 

 
 
 
 

 
 
 
 
 
 
Fig. 2: The distribution of word frequencies when people use 
words “congestion” and “slow” to describe traffic, w.r.t the 
ratio between current speed and a reference speed, which is 
defined by INRIX as the “uncongested free flow speed” for 
each road segment. X-axis denotes the speed ratio and Y-axis 
denotes the frequency scaled w.r.t the biggest value. 
 
1.3. Contributions  

 
In spite of the good potential of these new-type data, 

to the best of our knowledge, the problem of road-level 
traffic speed prediction using multiple data sources has not 
been well explored before, especially with the 
aforementioned challenges. In this paper, we propose a 
unified statistical framework, entitled Topic Enhanced 
Gaussian Process Aggregation Model (TEGPAM) fusing 
multi-source data, which includes traditional speed sensing 
data, and new-type “sensing” data from social media and 
map services. The framework combines the location 
disaggregation model to decompose vague locations into 
specific links, the traffic topic model to handle the language 
ambiguity in tweets and the Gaussian Process model to 
capture the spatial correlation in traffic sensing data.  

 
Specifically, this paper makes the following contributions: 
 
 Integration of data from multiple cross-domain 
sources. We implement the idea of improving traffic speed 
pre-diction by integrating speed sensing data with new-type 
traffic-related data, such as tweet and trajectory.  
 
 Formulation of the unified TEGPAM framework. We 
propose a unified probabilistic framework TEGPAM that 
combines the disaggregation model, topic model with 
Gaussian Process model and is learned by variational 
methods and a stochastic EM algorithm.  

 

 Extensive experiments to validate the performance of 
the proposed method. We validate our approach us-ing 
real-world data collected from two large American cities. 
The extensive experiments show the effectiveness of 
TEGPAM, as well as the model efficiency and reliability.  
 
 Elaborate analyses of introduced traffic-related data. 
We explore the impacts of different data sources, By 
decomposing TEGPAM into sub models and changing the 
combination ratio of datasets. Comparative experiments 
demonstrate the effectiveness of each data source.  
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The rest of this paper is organized as follows. Section 2 re-
views related works. Section 3 gives a preliminary to Gaus-
sian Process. Section 4 defines the problem and presents the 
model design. Section 5 gives model inference. Section 6 
analyzes the results of experiments on real data. Section 7 
concludes the paper and suggests future directions. 
 

2. RELATED WORKS  
 
Traffic prediction problem can be broadly classified 

into short-term and long-term prediction [1], considering 
three main basic traffic measurements: traffic flow, an 
equivalent flow rate in vehicles; speed, mean of the observed 
vehicle speeds; lane occupancy, the percentage of time that 
the sensor is detecting vehicle presence. This paper focuses 
on the short-term traffic speed prediction combining multi-
source heterogeneous data, which, as far as we know, has 
not been well explored before. This part gives a summary on 
short-term traffic speed prediction and the exploration on 
fusing multiple information sources. 

 
Short-term Traffic Speed Prediction: The presented 
methods can be classified into two categories: 
 
1) parametric methods, assume that traffic speed follows a 
probability distribution based on a fixed set of param-eters. 
Time series analysis technique is applied in traffic speed 
prediction based on the periodicity of traffic speed during a 
day or a week. Auto-Regressive Moving Average (ARMA) 
models are adopted in [46] and [38], where Mul-tivariate 
Spatial-Temporal Auto-Regressive (MSTAR) model is 
adopted to include dependency among observations from 
neighboring locations. A review about Auto-Regressive In-
tegrated Moving Average (ARIMA) time series methods can 
be found in [55]. ARIMA and Winters exponential smooth-
ing techniques are used to forecast urban freeway flow in  
[54]. [53] separate ARIMA models for a set of loop detectors 
that incorporate information from upstream measurement 
locations. A single Space-Time Auto-Regressive Integrated 
Moving Average (STARIMA) model is proposed to describe 
the spatiotemporal evolution of traffic flow in an urban 
network in [26], which is essentially a constrained Vector 
Autoregressive Moving Average (VARIMA) model [13] with 
constraints that reflect the topology of a spatial network and 
result in a drastic reduction in the number of parameters. A 
Generalized Space-Time ARIMA (GSTARIMA) method is 
proposed in [57], which extends ARIMA in spatial and tem-
poral dimension and is more flexible because parameters are 
designed to vary per spacial location. Kalman filter-based 
approaches are used in [11] and [14], and show advantages 
for on-line estimation of traffic flows. Markov logic network 
is used to simultaneously predict the congestion state in  
[30]. A structured time series model is proposed in multi-
variate form for short-term traffic prediction in [12]. 
 
2) non-parametric methods, make no distribution as-
sumptions and the number of parameters scales with the 
number of training data. K-nearest neighbor (KNN) non-
parametric regression methods, e.g. [9], [21], [58], find the k-

nearest neighbors using Euclidean distance and calculate the 
weight. Neutral Networks (NNs), e.g. [50], [27], are 
biologically-inspired systems and can be trained to ap-
proximate virtually any nonlinear function given adequate 
data and a proper network architecture. NNs have many 
derivatives for short-term prediction, such as back prop-
agation neutral network with genetic algorithms [1] and 
wavelet networks [22]. Travel speed of each road segment is 
computed using the GPS trajectories by a context-aware 
matrix factorization approach in [45]. To adaptively route a 
fleet of cooperative vehicles under the uncertain and 
dynamic road congestion conditions in [33] and [34], a GP 
probabilistic model is proposed to capture the spatial and 
temporal relationships of travel speeds over road segments 
and temporal contexts, especially with estimating the mean 
and covariance of the GP prior from the historical data. 
Geostatistical interpolation techniques named Kriging are 
proposed to capture spatial and temporal evolutions of 
traffic flows in [48]. 
 
Traffic Modeling with Multi-Source Heterogeneous Data:  
 
Some researchers attempted to combine traffic sensing data 
with other data sources, to handle external factors such as 
traffic accidents (e.g. [36], [42]), mobile sensors (e.g. [39], 
[40]) and weather (e.g. [37], [2]). [37] reviews the literature 
on the impact of weather on traffic demand, traffic safety, 
and traffic flow relationships. A trajectory-based community 
discovery method is proposed in [32], where the trajectory 
similarity is modeled by several types of kernels for different 
information markers (e.g. semantic properties of the 
locations and the movement velocity). [29] tackles the 
rents/returns bike number prediction prob-lem using 
multiple features, e.g. time and meteorology, as measures of 
similarity functions in multi-similarity-based inference 
model. While [32] and [29] introduce different information 
sources as new features for computing the similarity, our 
work assumes the latent relations between these 
informations, and constructs a Bayesian generative process. 
As crowdsourcing data from a crowd of online social 
platform become more available, researchers begin utilizing 
social content to estimate traffic conditions. Twitter data are 
matched to detect traffic incidents in [36]. In [39], traffic 
anomaly detection uses crowd sensing with two forms of 
data, human mobility and social media, and the detected 
anomalies are described by mining representative terms 
from the social media that people posted when the anomaly 
happened. Few methods incorporate social me-dia text data 
(e.g. Twitter data) to improve traffic speed prediction. [31] 
extends spatiotemporal GP in [34] to three dimensional 
topic-aware GP, where topics on road links are probabilistic 
modeled based on the user, space and time of tweets. [15] do 
not tackle the location uncertainty problem of tweets, 
because the inference of traffic status based on words of 
tweets only focuses on the average regional traffic flow, 
which is insufficient for predicting road speed. 
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3. GAUSSIAN PROCESS PRELIMINARIES  
 

Gaussian Processes (GPs) have been widely studied 
in many fields, such as spatio-temporal modeling [34] [35]. 
Given a set of road segments S under a specified time stamp, 
we spatially model the traffic speed of road segments via a 
function f : S→R+, which outputs the traffic speed for a given 
road link s. 

 
Assume that f is sampled from a Gaussian process prior: f(s) 
~ GP(µ(s); k(s; sʹ)), which is fully specified by the mean 
function and the covariance, or kernel, function: 

µ(s) = E[f(s)] 
 

k(s, sʹ)  =  E[(f(s) - (s))(f(sʹ) -µ (sʹ))] 
 

An important property of GP is that if two sets of variables 
property of GP is that if two sets of variables are jointly 
Gaussian, the conditional distribution of one set conditioned 
on the other is Gaussian, that is the basis to compute the 
posterior analytically [41]. 
 
Suppose that there are currently observed links S    S with 
speed observations V = {vs , s є S}, where the traffic speed vs for 
each links s є S follows vs ~ N(f(s),σ2), where σ2 is i.i.d. Gaussian 
noise. Then we can calculate the posterior distribution given 
the prior distribution with mean and kernel function, and the 
current observations V, which is still a GP distribution: 
 

          vs |V, µ, k ~ GP(µpost, k  post)                              (1) 
 

where 
 
 µpost (s) = µ(s) + k(S,s)T [K + σ2I]-1 (V-µ)                    (2) 

 
kpost(s,sʹ) = k(s,sʹ) – k(S,s)T[K + σ2I]-1 k(s,sʹ)                 (3) 
 
where is the mean vector and K is the kernel Gram ma- 
trix, which are generated through historical speed records at 
observed links S: 
 

µ = [µ(s)] s,sʹє S є R|S| 

 
K = [k(s,sʹ)]s,sʹє S є R|S|x|S| 

 
Column vector k(S, s) is the kernel values between s є S 
and every current observations in S: 
 
Eq.(2) implies that the posterior mean µpost (s) is determined 
by its prior mean µ (s) and the deviation between the 
historical observations and their prior means. If the positive 
covariance k(s, sʹ) between road links s and s0 is high, the 
current observation of sʹ will have more impacts on post(s) 
with (vsʹ - µ (s)). Eq.(3) presents the property that the 
posterior covariance kpost(s, sʹ) between s and sʹ will decrease 
if we have more current observations related to s and sʹ. 
Meanwhile, the posterior kpost(s, sʹ) decreases faster with 
high k(s; s0) between s and s0. 
 

Essentially, the kernel function k, generated from his-torical 
observations depicting the relation links, captures the spatial 
correlation of road network. If the covariance of two road 
links s and sʹ intuitively infer that they are close in the 
network structure. 

 
4. MODEL DESIGN 
    

This section begins by formalizing the speed 
prediction problem in Section 4.1. Then we introduce three 
models from Section 4.2 to 4.4 to tackle the challenges 
aforementioned in the introduction, i.e. a disaggregation 
model for location uncertainty in tweet and trajectory data, a 
traffic topic model for tweet language ambiguity and a GP 
model for capturing the spatial correlation of speed sensing 
data. Section 4.5 integrates three models dealing with 
different information source into a novel probabilistic model, 
named TEGPAM, under the Bayesian framework. 

 
5.TEGPAM  
 
Integrating the components introduced in the above 
subsections completes the design of the new probabilistic 
model, named the Topic-Enhanced Gaussian Process 
Aggregation Model (TEGPAM). Fig.3 gives the graphical 
representation of our model. 
 

 
Fig. 3: Graphical model for TEGPAM, with three part 
dealing with the three aforementioned data sources. 

 

6. EXPERIMENTS 
 

Experiments on traffic speed prediction of two large 
Amer-ican cities are conducted to evaluate the following 
perfor-mance indicators: prediction accuracy, model 
efficiency, and model stability. This section is organized as 
follows: Section 6.1 introduces the experiment setting, 
including datasets, benchmark methods and predictive 
metrics. Section 6.2 val-idates our model of the overall 
performance regarding the prediction accuracy and 
efficiency. Section 6.3 provides an elaborate evaluation of the 
TEGPAM’s effectiveness when applied to different data 
combinations. Section 6.4 discusses the model efficiency, and 
two factors of model stability: 1) sensitivity to parameters 
and 2) reliability on noisy tweets. 
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6.1 Experiment Setting  
 
6.1.1 Datasets  
 
We obtain three data sources for road traffic speed predic-
tion: 1) Traffic speed data. INRIX database [20] provides 

 
TABLE 2: Dataset size for each city. 
 

City  Data # total links # trajectories # tweets 

 

Philadelphia 847,714 
3,888,000,00
0 333,764 

Washington D.C. 1,286,284 
7,776,000,00
0 404,872 

 

 
traffic speeds for each road link at a 5-minute rate, from June 
1, 2013 to March 31, 2014, across two cities: Washington 
D.C. and Philadelphia. 2) Trajectory data. Trajectories are 
generated from INRIX database at a 5-minute rate. Given a 
random OD pair, we synthesize a trajectory by comput-ing 
the shortest path between them (i.e. using Johnson’s 
algorithm [23]). With the length and speed information of 
links from INRIX, the travel time of this trajectory is obtained 
by adding the time of each link up and corrupting it with a 
Gaussian noise. 3) Twitter data. Tweets in the same time 
period and cities are collected via the Twitter REST search 
API. Traffic related tweets are preliminarily extracted by 
matching at least one term of a predefined vocabulary 
developed by domain experts, which included terms like 
“traffic”, “accident”, “stuck”, “crash”, etc, then further clas-
sified and filtered using an SVM classifier that was trained 
based on manually labeled 10,000 tweets (50% positive and 
50% negative tweets). With road records containing the geo-
coordinates, names and aliases, we geocode tweets to road 
links by matching their geo-tag and text content to the front 
end of those links, which corresponds to the driving out 
direction and is denoted as Head. Different driving direc-
tions are denoted as different road links. After geocoding, 
there are 5 major roads with 35 road links mentioned in the 
Philadelphia twitter data, and 8 major roads with 44 links in 
Washington D.C. respectively. Details of each data source are 
show in TABLE 2. 
 
6.2 Benchmark Methods  
 
To validate the performance of our approach fusing multiple 
data sources, particularly, to explore the impact of each data 
source, this subsection designs several comparative 
methods, which are based on the decomposition of our 
approach TEGPAM. 
 
To make the expression clear, label data sources ftraffic 
speed, trajectory, twitterg as f1; 2; 3g. Denote M-i as the 
model excluding the data sources i f1; 2; 3g. Then we design 
sub models in terms of different data combinations: 
 
 

TEGPAM: our full model introduced in section 5 and 6, using 
traffic speed, travel time and twitter data. The model is 
learned by variational inference. 
M-1: trajectory and twitter based model, without incor-
porating traffic speed sensing data. 
 
M-2: traffic speed and twitter based model, without handling 
trajectory data. 
 
M-3: traffic speed and trajectory based model, without 
handling twitter data. 
 
M-13: trajectory based model. 
 
M-23: traffic speed based model, which is essentially a 
simplification of Gaussian Process Dynamic Congestion 
Model (GPDCM) in [33]. 
 
We infer the parameters of those models based on the same 
distribution assumptions, and we train parameters under 
the same settings. 
 
Baseline methods: We also compare our approach with 
three baseline methods: K-nearest neighbor model (KNN) 
[58], GSTARIMA [57] and the tweet semantic based 
method(TwiSemantic) [15]. KNN and GSTARIMA are based 
on recent speed observations with considering the road net-
work topology. TwiSemantic combines recent traffic speed 
with tweets semantics using linear regression. 
 
In KNN, we use non-weighted algorithm and the neigh-bor 
number is 5 with the best result here. In GSTARIMA, we set 
the spatial weighted matrix following the paper. In 
TwiSemantic, tweet semantics are mapped into the same 
vocabulary as our model used, which contains 1857 words 
and is obtained by removing stop words and words with 
frequencies lower than 10 from traffic related tweets. Our 
model is initialized by pre-analyzing a small fraction of data, 
with = 1; equal to the opposite value of the speed median in 
the fraction, i;j = K

1 ; j;k = M
1 ; and the topic number K is 2, 

denoting congested and normal. The dataset is divided into 
training and testing data by time stamps. In the training 
stage, the speed variables vt;s are observed to learn the 
model parameters; in the testing stage, the speeds are latent, 
the posterior distributions of which are inferred with fitted 
model parameters. 
 
6.3 Overall Comparison  
 
To show the improvement of fusing more data, we compare 
the sub-models M-1, M-2, M-3 fusing two data sources and 
M-23, M-13 based on one data source in the baseline meth-
ods, note that M-12 is not added to this set of experiments 
because of the insufficiency of only using twitter data. The 
percentage of speed sensor and trajectory are all set as 50%, 
and the fraction of testing data ranges from 1=6 to 5=6. 
 
The result is shown in Fig. 8. We observe that TEGPAM using 
3 data sources performs steadily the best, while M-1, M-2 
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and M-3 fusing 2 data sources take second place and M-23 
and M-13 using only one data source performs the worst, 
which validates the intuition that speed prediction 
combining more information can improve the accuracy. 
Meanwhile, comparing the error of 2 data based models, M-1 
is the worst, so excluding speed sensing data impacts the 
prediction most, which implies that speed sensing data 
might be more affective than trajectory data while trajectory 
is better than twitter data. Observing M-23 better than M-13 
also proves the indication. 
 
6.4 Effectiveness of Traffic Speed Data  
 
We firstly compare the performance of models with or with-
out using speed sensors, to demonstrate the effectiveness of 
speed data. Fix the percentage of speed sensor pv and the 
percentage of trajectory coverage pp as 50%, then test 
integrated TEGPAM, speed based M-23(GPDCM) and speed 
excluded M-1 with fraction of testing data as f1=6; : : : ; 5=6g. 
The results are shown in Fig. 9(a). The performance of 
TEGPAM is steadily better than the others, while only using 
speed sensors (M-23) is insufficient and limited, which again 
demonstrates the benefit of multi-source data. 
 
To answer the questions: with other data sources, how 
sparse the historical traffic speed data can be to predict 
current traffic speed? We set the percentage of speed 
sensors as pv = 10; 30; : : : ; 90%, under the fraction of testing 
data and the percentage of path coverage pp as 50%. The 
traffic speed based models, TEGPAM, M-2 and M-23 
(GPDCM) of our approach, and KNN, GSTARIMA, are applied 
on the training set. The results are shown in Fig.10(a). The 
score decrease trend of each model shows that with more 
current or recent observations, the missing speeds will be 
better predicted. However, when fewer than 70% speed 
sensors, TEGPAM fusing multi-source data performs better 
than the traffic speed based model (M-23/GPDCM, KNN and 
GSTARIMA), especially, the RMSE of TEGPAM is nearly 40%; 
50% and 15% less than that of M-23/GPDCM, KNN and 
GSTARIMA when only 10% links are observed. The results 
show the impact of traffic speed data and prove the 
effectiveness of TEGPAM when speed sensors are largely 
unavailable. 
 

 

 
 
 

 
 
 
 
 
 

 
(a) Speed and twitter based models.      
                                                 

 
 
 
 
 
 
 
 
 
 
 
 

 
(b) Trajectory based methods 

 
Fig. 10: Comparisons with changing the percentage of 

data. 
 

6.5 Effectiveness of Trajectory Data  
 

Trajectory data, with time and link information, has a 
direct relationship with road speeds. In a trajectory with 
available travel time, more information about the speed of 
those road links in this path is contained. If the travel time is 
big, we will be more confident to infer that some road links 
in the trajectory are congested and the speeds of them must 
be low. This section validate the effectiveness of trajectory 
data in predicting unobserved traffic speeds. 
 
We firstly validate the effectiveness of trajectory data by 
comparing models with or without using trajectory infor-
mation. Three models are applied on the fraction of testing 
data as f1=6; : : : ; 5=6g: integrate TEGPAM, trajectory based 
M-13 and trajectory excluded M-2. The percentages of speed 
pv and trajectory coverage pp remain 50%. The RMSE and 
MAPE scores are shown in Fig. 9(b). The performance of M-2 
is better than M-13, which implies that trajectory data alone 
is also not good enough to predict traffic speeds. Meanwhile, 
comparing M-2 here with M-1, and M-13 with M-23 in 
Fig.9(a), we observe that speed based model M-23 has a 
slight advantage to trajectory based model M-13, which 
validates the effectiveness of speed data in some degree. 

 
6.6 Effectiveness of Twitter Data  

 
The traffic related information of twitter data is very dy-
namic, this subsection is designed to answer the question: 
what role does twitter data play in predicting current traffic 
speeds, a strong predictor or a good supplement to other 
data sources? To answer the question, we apply twitter 
based models, TEGPAM, M-1, M-2 of our approach and 
TwiSemantic on the settings of 50% speed sensor 
percentage and trajectory coverage. From Fig. 9(c), we 
observe that the integrate model TEGPAM performs steadily 
good, and with the same data source of speed and twitter, M-
2 gains less error than TwiSemantic, which demonstrate the 
effectiveness of our model, especially the Traffic Topic 
model. Meanwhile, comparing model with and without using 
twitter, e.g. M-1 and M-13 in Fig. 10(b), M-2 and M-23 in 
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Fig.10(a), we observe that when the percentage is less than 
50%, the models including twitter data (M-1 and M-2) 
perform better than those excluding twitter (M-13 and M-
23). The results indicate that when observed speed 
percentage is low, Twit-ter data is a strong complement to 
speed sensing data. 
 
6.7 Model Efficiency and Stability  
 
Model efficiency is shown in Section 6.4.1. Then Section 6.4.2 
and 6.4.3 validates two factors of model stability: 
1)sensitivity to parameters and 2) reliability on noisy  
tweets. 

 
Topic model and Traffic Speed Gaussian Process 

Model. Experiments on real data demonstrate the 
effectiveness and efficiency of our model. For Future work, 
we plan to implement kernel-based and distributive GP, so 
the traffic prediction framework can be applied into a real-
time large traffic network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. CONCLUSIONS 
 

This paper proposes a novel probabilistic 
framework to pre-dict road traffic speed with multiple cross-
domain data. Ex-isting works are mainly based on speed 
sensing data, which suffers data sparsity and low coverage. 
In our work, we handle the challenges arising from fusing 
multi-source data, including location uncertainty, language 
ambiguity and data heterogeneity, using Location 
Disaggregation Model, Traffic. 
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