
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 02 | Feb-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2052

DISTRBUTED CACHE ARCHITECTURE FOR SCALABLE QUALIY OF

SERVICS FOR DISRIBUTED NETWORKS

 Girish.R.Deshpande1, Niranjan.S.J2, Sumayya.Rottiwale

1Assistant Professor , Dept. of CSE, GIT,Belgaum-590008
2 Assistant Professor , Dept. of CSE, KIT,Tiptur- 572202

3Student, Dept of CSE,GIT,Belgaum-590008
---***---

 ABSRACT: Performance degrades significantly in Mobile Ad
hoc Networks due to the packet losses. Most of these packet
losses result from the Route failures due to network mobility.
TCP assumes such losses occur because of congestion, thus
invokes congestion control mechanisms such as decreasing
congestion windows, raising timeout, etc, thus greatly reduce
TCP throughput. However, after a link failure is detected,
several packets will be dropped from the network interface
queue; TCP will time out because of these packet losses, as well
as for Acknowledgment losses caused by route failures.

KEY WORDS: Throughput, timeout, Adhoc-networks,
Acknowledgement

1. INTROUDUCION

1.2 Objective of the Study

Routing Protocols for ad hoc networks can be
classified into two major types: proactive and on-demand.
Proactive protocols attempt to maintain up-to-date routing
information to all nodes by periodically disseminating
topology updates throughout the network. In contrast, on
demand protocols attempt to discover a route only when a
route is needed. To reduce the overhead and the latency of
initiating a route discovery for each packet, on-demand
routing protocols use route Caches. Due to mobility, cached
routes easily become stale. Using stale routes causes packet
losses, and increases latency and overhead. In this paper, we
investigate how to make on-demand routing Protocols adapt
quickly to topology changes. This problem is important
because such protocols use route caches to make routing
decisions, it is challenging because topology changes are
frequent.

To meet the diverse quality-of-service (QoS)
requirements of emerging multimedia applications,
communication networks should provide end-to-end QoS
guarantees. QoS routing is the first step towards this goal. It
seeks to find routes that satisfy a set of QoS constraints while
achieving overall network efficiency. Therefore, unlike
current routing protocols, QoS routing protocols rely on
dynamic network state information for computing QoS
routes. Frequent route computing and network state
updates, especially in large networks, can cause computing
and traffic overhead, respectively. Therefore, scalability to
large networks has been identified as one of the key issues in
designing a QoS routing protocol. It is desirable to minimize
these overheads without sacrificing the overall routing

performance. In this paper, we address the route computing
overhead.

 In QoS-capable networks, routes are computed upon
arrival of calls. The main advantage of this on-demand
approach is its simplicity. However, in large networks with
high arrival rates, this approach can cause significant
computing load. The pre-computing technique has been
proposed and shown to be an effective solution to reduce
route computing load. The principle is to compute routes as
a background process and use them when a call arrives,
therefore reducing the computing load upon each arrival. In
this paper, we focus on route caching that has been recently
proposed as a solution to reduce the route computing load
by reusing already computed routes. In route caching, a
newly computed route is stored in a cache for possible use
by future calls. Upon arrival of a call, the cache is searched
for a route that can satisfy the requested QoS parameters. If
no such route is found in the cache, then a new route has to
be computed. Because cache size is limited, cache
replacement policies should be used when the cache is full.
In addition, when several feasible routes are found in the
cache, efficient route selection policies are required to
maximize network resource efficiency.

While caching is a promising approach to reduce
route computing load, we believe that recent proposals have
taken very simplistic approaches and several fundamental
issues have received no attention. Firstly, the hierarchical
architecture of very large networks has not been taken into
account. Large networks are potentially partitioned into
several domains. A realistic caching scheme should offer an
end-to-end solution across multiple domains in a large
network. Secondly, for scalability reasons, topology
aggregation is identified as an essential technique in large
networks with multiple domains. In a large network, an end-
to-end route potentially crosses several domains.
Considering that each domain represents only an aggregated
view of its internal topology and state information, the
important question is: how can such an end-to-end route be
cached efficiently? Finally, cached routes are subject to
changes in the network conditions and should be regularly
updated. The simple update techniques that try to
periodically re-compute all cached routes can cause
considerable computing load.

In this, we propose a novel distributed cache architecture to
reduce the route computing load, while addressing the
above-mentioned issues.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 02 | Feb-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2053

1.3 Scope of Study

The fundamental component of the distributed cache
architecture is its core architecture. The core architecture
consists of the cache elements deployed across the networks,
basic cache operations that includes saving and reusing the
cached routes, and the cache flushing. Before detailing the
distributed cache architecture, we briefly discuss our
network and routing models.

1.3.1 Network Model

The proposed distributed cache architecture is designed
to scale to very large networks. We have considered a large
network that is partitioned into several domains. Each
domain is connected to the rest of the network through its
border nodes. Domains are subject to topology aggregation,
a commonly used technique to reduce the overhead traffic
caused by network state updates [1].

1.3.2 Routing Model

Link state routing model similar to the ATM PNNI
standard [2]. Calls arrive at the border nodes of network
domains. QoS routes are computed and setup between two
border nodes. All routes are bi-directional. In link state
routing, network state information is periodically distributed
in the network, so that each border node maintains a link
state database containing topology and network state
information. In source routing, a route is computed at the
node where the call has arrived. If the route has to cross
several domains, only a skeleton route is computed for those
domains. When the route setup request enters a domain at a
border node, the border node constructs the detailed
structure of the route for that domain. Finally, we assume a
bandwidth-based QoS model, so that calls request for
bandwidth as their QoS parameter. This simple, yet realistic,
model can represent a broad range of applications, while
helps us to focus on other aspects of the cache architecture.

1.3.3 Core Distributed Cache Architecture

Fig. 1.1: Deployment of the core distributed cache
architecture

Across a network with multiple domains

Figure 1.1 shows how the core distributed cache
architecture is deployed in a large network. As shown, every
border node in a domain maintains a cache element. These
cache elements are connected together by means of pointers
(network addresses) and form the basis of the distributed
cache architecture. Each cached route is stored across
several cache elements in a distributed fashion and in the
form of several segments. By segment, we mean the part of a
route that is laid between two adjacent border nodes. Routes
enter the border nodes in the form of an ingress segment
and leave the border nodes in the form of an egress segment.
When a route crosses a border node, the cache element at
the border node stores information about both ingress and
egress segments. For example, in Figure 1.1, assume that
upon arrival of a call at the border node A, a route has been
successfully computed between the border nodes A and C.
This route also passes through the border node B and is
stored across the cache elements at the border nodes A, B,
and C as follows. The cache element at the border node A
stores the A-B segment, the cache element at the border
node B stores the A-B and the B-C segments, and the cache
element at the border node C stores the B-C segment. Note
that the cache elements at two ends of a route store only one
segment. Figure 1.2 shows the internal structure of the cache
element at a border node, identifying the following fields:

Fig.1.2: The internal structure of a cache element at a
border node

· Route identifier. This is a number assigned to a route

when it is cached. The combination of this number and the
address of the source node help to identify different
segments of a route that are stored across different cache
elements.

· Route state. A cached route can be in one of several
states.

· Address list of border nodes. This is a list containing
addresses of all border nodes that a route has crossed. This
list is used to traverse a route. It contains the addresses of
source, destination, and all intermediate border nodes that a

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 02 | Feb-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2054

route has crossed. This list is arranged as a bi-directional
linked list.

· Route bottleneck bandwidth. The QoS parameter

used in our architecture. This is the minimum available
bandwidth in an end-to-end cached route.

· Topology information of ingress and egress

segments. For each route, each cache stores topology
information of up to two segments connected to it. The
topology information is used by operations such as route
selection or cache snooping.

1. It is essential to store topology information of both

ingress and egress segments of the cached routes because
cached routes can be re-used from both ends. Therefore,
navigation through segments may be required in both
directions.

2. Each segment (either ingress or egress) belongs only

to a specific cached route. Segments are not shared between
different cached routes. In other words, each cached route is
saved in the form of multiple interconnected segments.

· Time stamp. This field keeps the time when the route

was computed and stored in the cache for the first time.

· Re-use counter. This is a counter that is increased by

one each time the cached route is re-used successfully.

1.3.4 Using the Cached Routes

When a new call arrives at a border node, based on the

requested bandwidth and the destination address, the cache
at the border node is searched for a feasible route. If no
feasible route is found in the cache, a route has to be
computed. If only one feasible route is found in the cache, the
route setup will be started as follows. Starting from the
cache element at the source border node, where the route is
found, the first segment of the route is extracted from the
cache and is setup in the network. If the segment is setup
successfully, the corresponding entry in the cache element is
labelled as "in-use" and route setup proceeds to the next
border node. As setup proceeds across border nodes, the
address list and the route identifier fields are used to keep
track and find the route information and the next border
node. This process continues until the last segment of the
route is setup. If at any stage the route setup fails, all
corresponding cache entries will be labelled as "stale" and an
on-demand route computing will be started. If more than
one feasible route is found in the cache, one of them should
be selected to go through setup process. In such situation, we
use one of the following route selection policies:

· Most Recently Computed (MRC). This policy aims to

minimize the probability of selecting an obsolete cached
route by choosing the youngest route. The principle is that

the younger route has been subject to less fluctuation in the
network states.

· Least Frequently Used (LFU). This policy attempts to

choose the least popular route, therefore increasing the
availability of more popular routes for future calls.

· Widest. This policy chooses the widest one among all

feasible routes. Its goal is to balance the network load. It also
attempts to reduce bandwidth fragmentation.

· Tightest. This policy attempts to choose the best fit. It

leaves wider routes for future calls with possibly higher
bandwidth requirement.

1.4 Advantages of Distributed Cache Architecture

 It can scale to very large networks since it has a
distributed nature. It has been designed to be easily
deployable in networks with multiple domains.

 A cache content management/replacement
technique called cache flushing has been developed.
It suits the distributed nature of our cache
architecture. The traditional cache replacement
techniques take action when the cache is full and a
new entry has to be added. In contrast, the cache
flushing works in the background and always
maintains some free space in the cache elements of
the proposed distributed cache architecture.

 Once a route is cached, our distributed cache
architecture does not rely on network state updates
and operates independently. Therefore, our cache
architecture does not suffer from inaccuracy of the
network state information caused by topology
aggregation, delays in the distribution of the
network states, or network state update interval.
Instead, our architecture directly monitors only
those parts of the network that are more likely to be
used. In this way, it intelligently adapts to the
changes in the network states. This is done by a
novel technique called cache snooping, which has
been developed to alleviate the effects of network
state fluctuations on the cached routes with
minimum overhead.

 Cache snooping increases the routing tolerance to
inaccurate network state information. This
improves the overall routing performance,
especially in the presence of highly inaccurate
network state information.

 We have considered simplicity as a key design issue
for distributed cache architecture and its associated
techniques. Therefore, the distributed cache
architecture relies on simple but efficient
algorithms and techniques so that the added
complexity to the network is minimized.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 02 | Feb-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2055

2. REASEARCH BACKGROUND

Maltz et al. [3] were the first to study the cache
performance of DSR. They found that the majority of ROUTE
REPLIES are based on cached routes, and only 59% of
ROUTE REPLIES carry correct routes. They also observed
that even ROUTE REPLIES from the target are not 100%
correct, since routes may break while a ROUTE REPLY is sent
back to the source node. They concluded that efficient route
maintenance is critical for all routing protocols with route
caches.

Holland and Vaidya [4] showed that stale routes
degrade TCP performance. They observed that TCP
experiences repeated route failures due to the inability of a
TCP sender’s routing protocol to quickly recognize and
remove stale routes from its cache. This problem is
complicated by allowing nodes to respond to route discovery
requests with routes from their caches, because they often
respond with stale routes.

Hu and Johnson [5] studied the design choices for
cache structure, cache capacity, and cache timeout. They
proposed several adaptive timeout mechanisms for link
caches. In Link-MaxLife, the timeout of a link is chosen
according to a stability table in which a node records its
perceived stability of each other node. A node chooses the
shortest-length path that has the longest expected lifetime.
When a link is used, the stability metric for both endpoints is
incremented by the amount of time since the link was last
used, multiplied by some factor. When a link is observed to
break, the stability metric for both endpoints is
multiplicatively decreased by a different factor. Link-MaxLife
was shown to outperform other adaptive timeout
mechanisms. Marina and Das proposed wider error
notification and timer-based route expiry. Wider error
notification aims at increasing the speed and extent of
ROUTE ERROR propagation. With wider error notification, a
node receiving a ROUTE ERROR rebroadcasts the packet if
the node caches a route containing the broken link and the
route was used to forward packets. There are three
differences between this technique and our work.

First, with this technique, a node detecting a link
failure does not know which neighbors have cached the link,
and thus cannot notify all nodes that need to be notified.
Second, this technique uses broadcast. Broadcast will
introduce overhead to the nodes that do not cache a broken
link, and some nodes that cached a broken link may not
receive notifications because broadcast is unreliable.
Broadcast will also interfere other transmissions. In
contrast, our algorithm uses unicast packets to notify only
the nodes that have cached a broken link. Third, stale routes
propagated through ROUTE REPLIES and cached for future
use will not be removed. Under timer-based expiry, an
average lifetime is assigned to all routes, which is obtained
using the lifetime of all broken routes in the past. This
approach works well when routes break uniformly, but

mobility may not be uniform in time or space. Lou and Fang
proposed an adaptive link timeout mechanism that adjusts
link lifetime based on the moving average of link lifetime
statistics.

2.1 Goal of Proposed Work:

The goal of this paper is to proactively
disseminating the broken link information to the nodes that
have that link in their caches. We define a new cache
structure called a cache table and present a distributed cache
update algorithm. Each node maintains in its cache table the
information necessary for cache updates. When a link failure
is detected, the algorithm notifies all reachable nodes that
have cached the link in a distributed manner. We show that
the algorithm outperforms DSR with path caches and with
Link-MaxLife [5], an adaptive timeout mechanism for link
caches.

2.4 Analysis of Existing Network

 TCP performance degrades significantly in Mobile
Ad hoc Networks due to the packet losses. Most of
these packet losses result from the Route failures
due to network mobility.

 TCP assumes such losses occur because of
congestion, thus invokes congestion control
mechanisms such as decreasing congestion
windows, raising timeout, etc, thus greatly reduce
TCP throughput.

 However, after a link failure is detected, several
packets will be dropped from the network interface
queue; TCP will time out because of these packet
losses, as well as for Acknowledgement losses
caused by route failures.

 There is no intimation information regarding about
to the failure links to the Node from its neighboring
Node’s. So that the Source Node cannot able to make
the Route Decision’s at the time of data transfer.

 The Stale route causes packet losses if packets
cannot be salvaged by intermediate nodes.

 The stale route increases packet delivery latency,
since the MAC layer goes through multiple
retransmissions before concluding a link failure.

 Use Adaptive time out mechanisms.

 If the cache size is set large, more stale routes will
stay in caches because FIFO replacement becomes
less effective.

2.5 Proposed System

 Prior work in DSR used heuristics with ad hoc
parameters to predict the lifetime of a link or a
route. However, heuristics cannot accurately

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 02 | Feb-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2056

estimate timeouts because topology changes are
unpredictable.

 Prior researches have proposed to provide link
failure feedback to TCP so that TCP can avoid
responding to route failures as if congestion had
occurred.

 We propose proactively disseminating the broken
link information to the nodes that have that link in
their caches. We define a new cache structure called
a cache table and present a distributed cache update
algorithm. Each node maintains in its cache table
the Information necessary for cache updates.

 The Source Node has the information regarding
about the Destination and the Intermediate Node
links failure, So that it is useful from Packet loss and
reduce the latency time while data transfer
throughout the Network.

 Proactive cache updating also prevents stale routes
from being propagated to other nodes.

 We defined a new cache structure called a cache
table to maintain the information necessary for
cache updates. We presented a distributed cache
update algorithm that uses the local information
kept by each node to notify all reachable nodes that
have cached a broken link. The algorithm enables
DSR [7] to adapt quickly to topology changes.

 The algorithm quickly removes stale routes no
matter how nodes move and which traffic model is
used.

3. ARCHITECTURAL DESIGN:

3.1 The Distributed Cache Update Algorithm

In this section, we first describe the cache staleness
issue. We then give the definition of a cache table and
present two algorithms used to maintain the information for
cache updates.

On-demand Route Maintenance results in delayed
awareness of mobility, because a node is not notified when
a cached route breaks until it uses the route to send
packets. We classify a cached route into three types:

 pre-active, if a route has not been used;

active, if a route is being used;

 post-active, if a route was used before but now is not.

It is not necessary to detect whether a route is active
or post-active, but these terms help clarify the cache
staleness issue. Stale pre-active and post-active routes will
not be detected until they are used. Due to the use of

responding to ROUTE REQUESTS with cached routes, stale
routes may be quickly propagated to the caches of other
nodes. Thus, pre-active and post-active routes are important
sources of cache staleness.

When a node detects a link failure, our goal is to
notify all reachable nodes that have cached that link to
update their caches. To achieve this goal, the node detecting
a link failure needs to know which nodes have cached the
broken link and needs to notify such nodes efficiently. This
goal is very challenging because of mobility and the fast
propagation of routing information.

Our solution is to keep track of topology
propagation state in a distributed manner. Topology
propagation state means which node has cached which link.
In a cache table, a node not only stores routes but also
maintain two types of information for each route:

 (1) How well routing information is synchronized
among nodes on a route.

(2) Which neighbor has learned which links through a
ROUTE REPLY. Each node gathers such information
during route discoveries and data transmission.

The two types of information are sufficient; because
each node knows for each cached link which neighbors have
that link in their caches. Each entry in the cache table
contains a field called Data Packets. This field records
whether a node has forwarded 0, 1, or 2 data packets. A node
knows how well routing information is synchronized
through the first data packet.

When forwarding a ROUTE REPLY, a node caches
only the downstream links; thus, its downstream nodes did
not cache the first downstream link through this ROUTE
REPLY. When receiving the first data packet, the node knows
that upstream nodes have cached all downstream links. The
node adds the upstream links to the route consisting of the
downstream links. Thus, when a downstream link is broken,
the node knows which upstream node needs to be notified.

The node also sets Data Packets to 1 before it
forwards the first data packet to the next hop. If the node can
successfully deliver this packet, it is highly likely that the
downstream nodes will cache the first downstream link;
otherwise, they will not cache the link through forwarding
packets with this route. Thus, if Data Packets in an entry is 1
and the route is the same as the source route in the packet
encountering a link failure, downstream nodes did not cache
the link. However, if Data Packets is 1 and the route is
different from the source route in the packet, downstream
nodes cached the link when the first data packet traversed
the route. If Data Packets is 2, then downstream nodes also
cached the link, whether the route is the same as the source
route in the packet. Each entry in the cache table contains a
field called Reply Record. This field records which neighbor
learned which links through a ROUTE REPLY. Before

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 02 | Feb-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2057

forwarding a ROUTE REPLY, a node records the neighbor to
which the ROUTE REPLY is sent and the downstream links as
an entry. Thus, when an entry contains a broken link, the
node will know which neighbor needs to be notified. The
algorithm uses the information kept by each node to achieve
distributed cache updating.

When a node detects a link failure while forwarding
a packet, the algorithm checks the Data Packets field of the
cache entries containing the broken link:

(1) If it is 0, indicating that the node has not
forwarded any data packet using the route, then no
downstream nodes need to be notified because they did not
cache the broken link.

(2) If it is 1 and the route being examined is the
same as the source route in the packet, indicating that the
packet is the first data packet, then no downstream nodes
need to be notified but all upstream nodes do.

(3) If it is 1 and the route being examined is
different from the source route in the packet, then both
upstream and downstream nodes need to be notified,
because the first data packet has traversed the route.

(4) If it is 2, then both upstream and downstream
nodes need to be notified, because at least one data packet
has traversed the route.

The algorithm notifies the closest upstream and/or
downstream nodes and the neighbors that learned the
broken link through ROUTE REPLIES. When a node receives
a notification, the algorithm notifies selected neighbors:
upstream and/or downstream neighbors, and other
neighbors that have cached the broken link through ROUTE
REPLIES. Thus, the broken link information will be quickly
propagated to all reachable nodes that have that link in their
caches.

 3.2 Modules Used

Module 1: Route Request

When a source node wants to send packets to a
destination to which it does not have a route, it initiates a
Route Discovery by broadcasting a ROUTE REQUEST. The
node receiving a ROUTE REQUEST checks whether it has a
route to the destination in its cache. If it has, it sends a
ROUTE REPLY to the source including a source route, which
is the concatenation of the source route in the ROUTE
REQUEST and the cached route. If the node does not have a
cached route to the destination, it adds its address to the
source route and rebroadcasts the ROUTE REQUEST. When
the destination receives the ROUTE REQUEST, it sends a
ROUTE REPLY containing the source route to the source.
Each node forwarding a ROUTE REPLY stores the route
starting from itself to the destination. When the source
receives the ROUTE REPLY, it caches the source route.

Module 2: Route Maintenance

Route Maintenance, the node forwarding a packet is
responsible for confirming that the packet has been
successfully received by the next hop. If no
acknowledgement is received after the maximum number of
retransmissions, the forwarding node sends a ROUTE
ERROR to the source, indicating the broken link. Each node
forwarding the ROUTE ERROR removes from its cache the
routes containing the broken link.

Module 3: Cache Updating

When a node detects a link failure, our goal is to
notify all reachable nodes that have cached that link to
update their caches. To achieve this goal, the node detecting
a link failure needs to know which nodes have cached the
broken link and needs to notify such nodes efficiently. Our
solution is to keep track of topology propagation state in a
distributed manner.

In a cache table, a node not only stores routes but
also maintain two types of information for each route: (1)
how well routing information is synchronized among nodes
on a route; and (2) which neighbor has learned which links
through a ROUTE REPLY. Each node gathers such
information during route discoveries and data transmission,
without introducing additional overhead. The two types of
information are sufficient; because each node knows for each
cached link which neighbors have that link in their caches.

3.3 Example Usage

 Example 1:

Fig. 2: Routing Caching in DSR

We show an example of the cache staleness issue. In
Figure 2 assume that route ABCDE is active, route FGCDH is
post-active, and route IGCDJ is pre-active. Thus, node C has
cached both the upstream and the downstream links for the
active and post-active routes, but only the downstream links,
CDJ, for the pre-active route. When forwarding a packet for
source A, node C detects that link CD is broken. It removes
stale routes from its cache and sends a ROUTE ERROR to

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 02 | Feb-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2058

node A. However, the downstream nodes, D and E, will not
know about the broken link. Moreover, node C does not
know that other nodes also have cached the broken link,
including all the nodes on the post-active route, F, G, D, and
H, and the upstream nodes on the pre-active route, I and G.
Stale routes have several adverse effects:

 Using stale routes causes packet losses if
packets cannot be salvaged by intermediate
nodes;

 Using stale routes increases packet delivery
latency, since the MAC layer goes through
multiple retransmissions before concluding a
link failure;

 Using stale routes increases routing overhead,
since the node detecting a link failure will send
a ROUTE ERROR to the source node;

 Using stale routes degrades TCP performance,
since TCP will invoke congestion control
mechanisms for packet losses caused by route
failures.

We use algorithms add Route and find Route to collect

and maintain the information necessary for cache updates.
Algorithm add Route is called when a node attempts to add a
route to its cache table.

Example 2:

We use the network shown in Figure 5.3 for our examples.
Initially, there are no data flows and all caches are empty.
We use S-D for Source Destination and DP for Data Packets
in the tables describing the content of caches.

Fig. 3: Networks Used in Routing Protocols

Node A initiates a route discovery to node E, and E sends
a ROUTE REPLY to A. Each node forwarding the ROUTE
REPLY creates a cache table entry. For instance, node C

creates an entry consisting of four fields: the route consisting
of the downstream links, the source and destination pair, the
number of data packets the node has forwarded using the
route, and which neighbor will learn which links through the
ROUTE REPLY.

When node A receives the ROUTE REPLY, it creates a
cache table entry.

When node A uses this route to send the first data
packet, it increments Data Packets to 1. Each intermediate
node receiving the first data packet updates its cache table
entry. For instance, node C increments Data Packets to 1,
adds the upstream links to route CDE, and removes the
Reply Record entry, as the complete route indicates that the
upstream nodes, A and B, have cached the downstream links,
CDE.

When node E receives the first data packet, it creates a
cache table entry

 When a node on this route receives the second data
packet, it increments Data Packets to 2. Assume that after
transmitting at least two data packets for flow 1, node C
receives a ROUTE REQUEST from G with source F and
destination E. Before sending a ROUTE REPLY to node G,
node C adds a Reply Record entry to its cache

 Reply Record Before sending a ROUTE REPLY to node F,

node G creates a cache table entry.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 02 | Feb-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2059

 When node F receives the ROUTE REPLY, it creates a
cache table entry

 When node C receives a ROUTE REQUEST from I with
source H and destination A, it adds the second Reply Record
entry to its cache.

 A node creates a cache table entry to store source route
if a route consisting of the downstream links in the source
route does not exist in its cache. Assume that flow 2 starts.
When it reaches node D, node D adds the second entry to its
cache, because the sub-route CDE has been completed by
flow 1. When receiving the first data packet, node D knows
that its upstream nodes have cached the downstream link
DE.

When node F receives a ROUTE REQUEST from node K
with source J and destination D, it extends its cache entry.

4. CONCLUSION & SCOPE FOR FUTURE WORK

4.1 Conclusion

In this paper, we have introduced a distributed
cache architecture to reduce the route computing load
caused by the execution of the QoS routing algorithms,
assuming bandwidth-based QoS requirements. Considering
the distributed nature of cache architecture, to minimize the
added complexity to the network, simplicity is a key design
issue in our approach. Therefore, we have designed and
incorporated simple yet efficient algorithms and techniques.
The distributed cache architecture is easily scaled to large
hierarchical networks. The cached routes are stored in the
form of multiple interconnected segments across several
cache elements. Cache snooping was proposed as a
distributed technique to alleviate the effects of rapid changes
in the network states so that the route computing load is
reduced more efficiently. In addition, cache snooping helps
to increase the tolerance of QoS routing in the presence of

inaccurate network state information caused by long
network state update intervals. This means that the
proposed distributed cache architecture can also reduce the
overhead traffic caused by the frequent distribution of the
network state information, while achieving a good
performance. Also route borrowing was introduced as a
simple but effective technique to improve the performance
of the distributed cache architecture. While cache snooping
improves the cache hit ratio, route borrowing significantly
increases the cache utilization ratio. We considered realistic
network topologies, routing algorithms, traffic models, and
topology aggregation techniques to show that our solution is
deployed in real life large networks.

4.2 Scope for Future Work

As with other applications, there is certainly a scope
for improvement in this application too. New modules are in
pipeline for to increase the compatibility of the project. Once
these improvements have been done, the majority of the
features that make an application an excellent one would be
there and the usage would become wider and more
expensive. Here, there a some of decision’s for to make our
project effectively and efficiently in the future

 Implement Non-Adaptive Routing or Link state
Routing while Message Transfer

 Send the messages in the Encrypted format show
that the Network hackers are not able to interfere
while transmission.

 Establish Key agreement process between the
Source and the Destination nodes

 Implement the Bidirectional route information

between the source and the destination nodes.

REFERENCES

[1] B. Awerbuck, Y. Du, B. Khan, and Y. Shavitt. Routing
Through Networks with Hierarchical Topology
Aggregation. Journal of High Speed Networks, 7(17):57-
73, 1998,

[2] ATM Forum. Private Network-Network Interface
specification version 1.0. Technical report af-pnni-
0055.000, ATM forum, March 1996.

[3] J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and J. Jetcheva.
A performance comparison of multi-hop wireless ad hoc
networkrouting protocols. In Proc. 4th ACM MobiCom,
pp. 85–97, 1998.

[4] G. Holland and N. Vaidya. Analysis of TCP
performance over mobile ad hoc networks. In Proc. 5th
ACM MobiCom,pp. 219–230, 1999.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 02 | Feb-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2060

[5] Y.-C. Hu and D. Johnson. Caching strategies in on-
demand routing protocols for wireless ad hoc networks.
In Proc. 6th ACM MobiCom, pp. 231–242, 2000.

[6] D. Johnson and D. Maltz. Dynamic Source Routing in
ad hoc wireless networks. In Mobile Computing, T.
Imielinski and H. Korth, Eds, Ch. 5, pp. 153–181, Kluwer,
1996.

[7] D. Maltz, J. Brooch, J. Jetcheva, and D. Johnson. The
effects of on-demand behavior in routing protocols for
multi-hop wireless ad hoc networks. IEEE J. on Selected
Areas in Communication, 17(8):1439–1453, 1999.

 [8]

http://scitec.uwichill.edu.bb/cmp/online/cs22l/waterfall_m
odel.htm

[9] Software Engineering: A Practitioner's Approach,
seventh edition by Roger Pressman

http://scitec.uwichill.edu.bb/cmp/online/cs22l/waterfall_model.htm
http://scitec.uwichill.edu.bb/cmp/online/cs22l/waterfall_model.htm
http://www.mhhe.com/pressman

