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 ABSRACT: Performance degrades significantly in Mobile Ad 
hoc Networks due to the packet losses. Most of these packet 
losses result from the Route failures due to network mobility. 
TCP assumes such losses occur because of congestion, thus 
invokes congestion control mechanisms such as decreasing 
congestion windows, raising timeout, etc, thus greatly reduce 
TCP  throughput. However, after a link failure is detected, 
several packets will be dropped from the network interface 
queue; TCP will time out because of these packet losses, as well 
as for Acknowledgment losses caused by route failures.  
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1. INTROUDUCION 
 

1.2 Objective of the Study 
 

Routing Protocols for ad hoc networks can be 
classified into two major types: proactive and on-demand. 
Proactive protocols attempt to maintain up-to-date routing 
information to all nodes by periodically disseminating 
topology updates throughout the network. In contrast, on 
demand protocols attempt to discover a route only when a 
route is needed. To reduce the overhead and the latency of 
initiating a route discovery for each packet, on-demand 
routing protocols use route Caches. Due to mobility, cached 
routes easily become stale. Using stale routes causes packet 
losses, and increases latency and overhead. In this paper, we 
investigate how to make on-demand routing Protocols adapt 
quickly to topology changes. This problem is important 
because such protocols use route caches to make routing 
decisions, it is challenging because topology changes are 
frequent. 

To meet the diverse quality-of-service (QoS) 
requirements of emerging multimedia applications, 
communication networks should provide end-to-end QoS 
guarantees. QoS routing is the first step towards this goal. It 
seeks to find routes that satisfy a set of QoS constraints while 
achieving overall network efficiency. Therefore, unlike 
current routing protocols, QoS routing protocols rely on 
dynamic network state information for computing QoS 
routes. Frequent route computing and network state 
updates, especially in large networks, can cause computing 
and traffic overhead, respectively. Therefore, scalability to 
large networks has been identified as one of the key issues in 
designing a QoS routing protocol. It is desirable to minimize 
these overheads without sacrificing the overall routing 

performance. In this paper, we address the route computing 
overhead. 

     In QoS-capable networks, routes are computed upon 
arrival of calls. The main advantage of this on-demand 
approach is its simplicity. However, in large networks with 
high arrival rates, this approach can cause significant 
computing load. The pre-computing technique has been 
proposed and shown to be an effective solution to reduce 
route computing load. The principle is to compute routes as 
a background process and use them when a call arrives, 
therefore reducing the computing load upon each arrival. In 
this paper, we focus on route caching that has been recently 
proposed as a solution to reduce the route computing load 
by reusing already computed routes. In route caching, a 
newly computed route is stored in a cache for possible use 
by future calls. Upon arrival of a call, the cache is searched 
for a route that can satisfy the requested QoS parameters. If 
no such route is found in the cache, then a new route has to 
be computed. Because cache size is limited, cache 
replacement policies should be used when the cache is full. 
In addition, when several feasible routes are found in the 
cache, efficient route selection policies are required to 
maximize network resource efficiency. 
 

While caching is a promising approach to reduce 
route computing load, we believe that recent proposals have 
taken very simplistic approaches and several fundamental 
issues have received no attention. Firstly, the hierarchical 
architecture of very large networks has not been taken into 
account. Large networks are potentially partitioned into 
several domains. A realistic caching scheme should offer an 
end-to-end solution across multiple domains in a large 
network. Secondly, for scalability reasons, topology 
aggregation is identified as an essential technique in large 
networks with multiple domains. In a large network, an end-
to-end route potentially crosses several domains. 
Considering that each domain represents only an aggregated 
view of its internal topology and state information, the 
important question is: how can such an end-to-end route be 
cached efficiently? Finally, cached routes are subject to 
changes in the network conditions and should be regularly 
updated. The simple update techniques that try to 
periodically re-compute all cached routes can cause 
considerable computing load. 

 
In this, we propose a novel distributed cache architecture to 
reduce the route computing load, while addressing the 
above-mentioned issues. 
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1.3 Scope of Study 

The fundamental component of the distributed cache 
architecture is its core architecture. The core architecture 
consists of the cache elements deployed across the networks, 
basic cache operations that includes saving and reusing the 
cached routes, and the cache flushing. Before detailing the 
distributed cache architecture, we briefly discuss our 
network and routing models.  

1.3.1 Network Model 

The proposed distributed cache architecture is designed 
to scale to very large networks. We have considered a large 
network that is partitioned into several domains. Each 
domain is connected to the rest of the network through its 
border nodes. Domains are subject to topology aggregation, 
a commonly used technique to reduce the overhead traffic 
caused by network state updates [1]. 

1.3.2 Routing Model 

Link state routing model similar to the ATM PNNI 
standard [2]. Calls arrive at the border nodes of network 
domains. QoS routes are computed and setup between two 
border nodes. All routes are bi-directional. In link state 
routing, network state information is periodically distributed 
in the network, so that each border node maintains a link 
state database containing topology and network state 
information. In source routing, a route is computed at the 
node where the call has arrived. If the route has to cross 
several domains, only a skeleton route is computed for those 
domains. When the route setup request enters a domain at a 
border node, the border node constructs the detailed 
structure of the route for that domain. Finally, we assume a 
bandwidth-based QoS model, so that calls request for 
bandwidth as their QoS parameter. This simple, yet realistic, 
model can represent a broad range of applications, while 
helps us to focus on other aspects of the cache architecture. 

1.3.3 Core Distributed Cache Architecture 

 

Fig. 1.1: Deployment of the core distributed cache 
architecture 

Across a network with multiple domains 

Figure 1.1 shows how the core distributed cache 
architecture is deployed in a large network. As shown, every 
border node in a domain maintains a cache element. These 
cache elements are connected together by means of pointers 
(network addresses) and form the basis of the distributed 
cache architecture. Each cached route is stored across 
several cache elements in a distributed fashion and in the 
form of several segments. By segment, we mean the part of a 
route that is laid between two adjacent border nodes. Routes 
enter the border nodes in the form of an ingress segment 
and leave the border nodes in the form of an egress segment. 
When a route crosses a border node, the cache element at 
the border node stores information about both ingress and 
egress segments. For example, in Figure 1.1, assume that 
upon arrival of a call at the border node A, a route has been 
successfully computed between the border nodes A and C. 
This route also passes through the border node B and is 
stored across the cache elements at the border nodes A, B, 
and C as follows. The cache element at the border node A 
stores the A-B segment, the cache element at the border 
node B stores the A-B and the B-C segments, and the cache 
element at the border node C stores the B-C segment. Note 
that the cache elements at two ends of a route store only one 
segment. Figure 1.2 shows the internal structure of the cache 
element at a border node, identifying the following fields: 

         
 

Fig.1.2: The internal structure of a cache element at a 
border node 

 
· Route identifier. This is a number assigned to a route 

when it is cached. The combination of this number and the 
address of the source node help to identify different 
segments of a route that are stored across different cache 
elements. 

 

· Route state. A cached route can be in one of several 
states.  

· Address list of border nodes. This is a list containing 
addresses of all border nodes that a route has crossed. This 
list is used to traverse a route. It contains the addresses of 
source, destination, and all intermediate border nodes that a 
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route has crossed. This list is arranged as a bi-directional 
linked list. 

 
· Route bottleneck bandwidth. The QoS parameter 

used in our architecture. This is the minimum available 
bandwidth in an end-to-end cached route. 

 
· Topology information of ingress and egress 

segments. For each route, each cache stores topology 
information of up to two segments connected to it. The 
topology information is used by operations such as route 
selection or cache snooping. 

 
1. It is essential to store topology information of both 

ingress and egress segments of the cached routes because 
cached routes can be re-used from both ends. Therefore, 
navigation through segments may be required in both 
directions. 

 
2. Each segment (either ingress or egress) belongs only 

to a specific cached route. Segments are not shared between 
different cached routes. In other words, each cached route is 
saved in the form of multiple interconnected segments. 

 
·  Time stamp. This field keeps the time when the route 

was computed and stored in the cache for the first time. 
 
·  Re-use counter. This is a counter that is increased by 

one each time the cached route is re-used successfully. 
 
1.3.4 Using the Cached Routes 

 
When a new call arrives at a border node, based on the 

requested bandwidth and the destination address, the cache 
at the border node is searched for a feasible route. If no 
feasible route is found in the cache, a route has to be 
computed. If only one feasible route is found in the cache, the 
route setup will be started as follows. Starting from the 
cache element at the source border node, where the route is 
found, the first segment of the route is extracted from the 
cache and is setup in the network. If the segment is setup 
successfully, the corresponding entry in the cache element is 
labelled as "in-use" and route setup proceeds to the next 
border node. As setup proceeds across border nodes, the 
address list and the route identifier fields are used to keep 
track and find the route information and the next border 
node. This process continues until the last segment of the 
route is setup. If at any stage the route setup fails, all 
corresponding cache entries will be labelled as "stale" and an 
on-demand route computing will be started. If more than 
one feasible route is found in the cache, one of them should 
be selected to go through setup process. In such situation, we 
use one of the following route selection policies: 

 
· Most Recently Computed (MRC). This policy aims to 

minimize the probability of selecting an obsolete cached 
route by choosing the youngest route. The principle is that 

the younger route has been subject to less fluctuation in the 
network states. 

 
· Least Frequently Used (LFU). This policy attempts to 

choose the least popular route, therefore increasing the 
availability of more popular routes for future calls. 

 
· Widest. This policy chooses the widest one among all 

feasible routes. Its goal is to balance the network load. It also 
attempts to reduce bandwidth fragmentation. 

 
· Tightest. This policy attempts to choose the best fit. It 

leaves wider routes for future calls with possibly higher 
bandwidth requirement.  
 
1.4 Advantages of Distributed Cache Architecture 
 

 It can scale to very large networks since it has a 
distributed nature. It has been designed to be easily 
deployable in networks with multiple domains. 

 A cache content management/replacement 
technique called cache flushing has been developed. 
It suits the distributed nature of our cache 
architecture. The traditional cache replacement 
techniques take action when the cache is full and a 
new entry has to be added. In contrast, the cache 
flushing works in the background and always 
maintains some free space in the cache elements of 
the proposed distributed cache architecture. 

 Once a route is cached, our distributed cache 
architecture does not rely on network state updates 
and operates independently. Therefore, our cache 
architecture does not suffer from inaccuracy of the 
network state information caused by topology 
aggregation, delays in the distribution of the 
network states, or network state update interval. 
Instead, our architecture directly monitors only 
those parts of the network that are more likely to be 
used. In this way, it intelligently adapts to the 
changes in the network states. This is done by a 
novel technique called cache snooping, which has 
been developed to alleviate the effects of network 
state fluctuations on the cached routes with 
minimum overhead. 

 Cache snooping increases the routing tolerance to 
inaccurate network state information. This 
improves the overall routing performance, 
especially in the presence of highly inaccurate 
network state information. 

 We have considered simplicity as a key design issue 
for distributed cache architecture and its associated 
techniques. Therefore, the distributed cache 
architecture relies on simple but efficient 
algorithms and techniques so that the added 
complexity to the network is minimized. 
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2. REASEARCH BACKGROUND 
 

Maltz et al. [3] were the first to study the cache 
performance of DSR. They found that the majority of ROUTE 
REPLIES are based on cached routes, and only 59% of 
ROUTE REPLIES carry correct routes. They also observed 
that even ROUTE REPLIES from the target are not 100% 
correct, since routes may break while a ROUTE REPLY is sent 
back to the source node. They concluded that efficient route 
maintenance is critical for all routing protocols with route 
caches. 

Holland and Vaidya [4] showed that stale routes 
degrade TCP performance. They observed that TCP 
experiences repeated route failures due to the inability of a 
TCP sender’s routing protocol to quickly recognize and 
remove stale routes from its cache. This problem is 
complicated by allowing nodes to respond to route discovery 
requests with routes from their caches, because they often 
respond with stale routes. 

Hu and Johnson [5] studied the design choices for 
cache structure, cache capacity, and cache timeout. They 
proposed several adaptive timeout mechanisms for link 
caches. In Link-MaxLife, the timeout of a link is chosen 
according to a stability table in which a node records its 
perceived stability of each other node. A node chooses the 
shortest-length path that has the longest expected lifetime. 
When a link is used, the stability metric for both endpoints is 
incremented by the amount of time since the link was last 
used, multiplied by some factor. When a link is observed to 
break, the stability metric for both endpoints is 
multiplicatively decreased by a different factor. Link-MaxLife 
was shown to outperform other adaptive timeout 
mechanisms. Marina and Das proposed wider error 
notification and timer-based route expiry. Wider error 
notification aims at increasing the speed and extent of 
ROUTE ERROR propagation. With wider error notification, a 
node receiving a ROUTE ERROR rebroadcasts the packet if 
the node caches a route containing the broken link and the 
route was used to forward packets. There are three 
differences between this technique and our work.  

First, with this technique, a node detecting a link 
failure does not know which neighbors have cached the link, 
and thus cannot notify all nodes that need to be notified. 
Second, this technique uses broadcast. Broadcast will 
introduce overhead to the nodes that do not cache a broken 
link, and some nodes that cached a broken link may not 
receive notifications because broadcast is unreliable. 
Broadcast will also interfere other transmissions. In 
contrast, our algorithm uses unicast packets to notify only 
the nodes that have cached a broken link. Third, stale routes 
propagated through ROUTE REPLIES and cached for future 
use will not be removed. Under timer-based expiry, an 
average lifetime is assigned to all routes, which is obtained 
using the lifetime of all broken routes in the past. This 
approach works well when routes break uniformly, but 

mobility may not be uniform in time or space. Lou and Fang 
proposed an adaptive link timeout mechanism that adjusts 
link lifetime based on the moving average of link lifetime 
statistics. 

2.1 Goal of Proposed Work: 

The goal of this paper is to proactively 
disseminating the broken link information to the nodes that 
have that link in their caches. We define a new cache 
structure called a cache table and present a distributed cache 
update algorithm. Each node maintains in its cache table the 
information necessary for cache updates. When a link failure 
is detected, the algorithm notifies all reachable nodes that 
have cached the link in a distributed manner. We show that 
the algorithm outperforms DSR with path caches and with 
Link-MaxLife [5], an adaptive timeout mechanism for link 
caches.  

2.4 Analysis of Existing Network 

 TCP performance degrades significantly in Mobile 
Ad hoc Networks due to the packet losses. Most of 
these packet losses result from the Route failures 
due to network mobility. 

 TCP assumes such losses occur because of 
congestion, thus invokes congestion control 
mechanisms such as decreasing congestion 
windows, raising timeout, etc, thus greatly reduce 
TCP  throughput. 

 However, after a link failure is detected, several 
packets will be dropped from the network interface 
queue; TCP will time out because of these packet 
losses, as well as for Acknowledgement losses 
caused by route failures.  

 There is no intimation information regarding about 
to the failure links to the Node from its neighboring 
Node’s. So that the Source Node cannot able to make 
the Route Decision’s at the time of data transfer.   

 The Stale route causes packet losses if packets 
cannot be salvaged by intermediate nodes. 

 The stale route increases packet delivery latency, 
since the MAC layer goes through multiple 
retransmissions before concluding a link failure. 

 Use Adaptive time out mechanisms. 

 If the cache size is set large, more stale routes will 
stay in caches because FIFO replacement becomes 
less effective. 
 

2.5 Proposed System 

 Prior work in DSR used heuristics with ad hoc 
parameters to predict the lifetime of a link or a 
route. However, heuristics cannot accurately 
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estimate timeouts because topology changes are 
unpredictable. 

 Prior researches have proposed to provide link 
failure feedback to TCP so that TCP can avoid 
responding to route failures as if congestion had 
occurred. 

 We propose proactively disseminating the broken 
link information to the nodes that have that link in 
their caches. We define a new cache structure called 
a cache table and present a distributed cache update 
algorithm. Each node maintains in its cache table 
the Information necessary for cache updates.  

 The Source Node has the information regarding 
about the Destination and the Intermediate Node 
links failure, So that it is useful from Packet loss and 
reduce the latency time while data transfer 
throughout the Network. 

 Proactive cache updating also prevents stale routes 
from being propagated to other nodes. 

 We defined a new cache structure called a cache 
table to maintain the information necessary for 
cache updates. We presented a distributed cache 
update algorithm that uses the local information 
kept by each node to notify all reachable nodes that 
have cached a broken link. The algorithm enables 
DSR [7] to adapt quickly to topology changes.  

 The algorithm quickly removes stale routes no 
matter how nodes move and which traffic model is 
used. 

3. ARCHITECTURAL DESIGN: 
 

3.1 The Distributed Cache Update Algorithm 
 

In this section, we first describe the cache staleness 
issue. We then give the definition of a cache table and 
present two algorithms used to maintain the information for 
cache updates. 
 

On-demand Route Maintenance results in delayed 
awareness of mobility, because a node is not notified when 
a cached route breaks until it uses the route to send 
packets. We classify a cached route into three types: 

 pre-active, if a route has not been used; 

active, if a route is being used;  

 post-active, if a route was used before but now is not. 

It is not necessary to detect whether a route is active 
or post-active, but these terms help clarify the cache 
staleness issue. Stale pre-active and post-active routes will 
not be detected until they are used. Due to the use of 

responding to ROUTE REQUESTS with cached routes, stale 
routes may be quickly propagated to the caches of other 
nodes. Thus, pre-active and post-active routes are important 
sources of cache staleness. 

When a node detects a link failure, our goal is to 
notify all reachable nodes that have cached that link to 
update their caches. To achieve this goal, the node detecting 
a link failure needs to know which nodes have cached the 
broken link and needs to notify such nodes efficiently. This 
goal is very challenging because of mobility and the fast 
propagation of routing information. 

Our solution is to keep track of topology 
propagation state in a distributed manner. Topology 
propagation state means which node has cached which link. 
In a cache table, a node not only stores routes but also 
maintain two types of information for each route:  

 (1) How well routing information is synchronized                  
among nodes on a route. 

(2) Which neighbor has learned which links through a 
ROUTE REPLY. Each node gathers such information 
during route discoveries and data transmission. 

The two types of information are sufficient; because 
each node knows for each cached link which neighbors have 
that link in their caches. Each entry in the cache table 
contains a field called Data Packets. This field records 
whether a node has forwarded 0, 1, or 2 data packets. A node 
knows how well routing information is synchronized 
through the first data packet. 

When forwarding a ROUTE REPLY, a node caches 
only the downstream links; thus, its downstream nodes did 
not cache the first downstream link through this ROUTE 
REPLY. When receiving the first data packet, the node knows 
that upstream nodes have cached all downstream links. The 
node adds the upstream links to the route consisting of the 
downstream links. Thus, when a downstream link is broken, 
the node knows which upstream node needs to be notified.  

The node also sets Data Packets to 1 before it 
forwards the first data packet to the next hop. If the node can 
successfully deliver this packet, it is highly likely that the 
downstream nodes will cache the first downstream link; 
otherwise, they will not cache the link through forwarding 
packets with this route. Thus, if Data Packets in an entry is 1 
and the route is the same as the source route in the packet 
encountering a link failure, downstream nodes did not cache 
the link. However, if Data Packets is 1 and the route is 
different from the source route in the packet, downstream 
nodes cached the link when the first data packet traversed 
the route. If Data Packets is 2, then downstream nodes also 
cached the link, whether the route is the same as the source 
route in the packet. Each entry in the cache table contains a 
field called Reply Record. This field records which neighbor 
learned which links through a ROUTE REPLY. Before 
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forwarding a ROUTE REPLY, a node records the neighbor to 
which the ROUTE REPLY is sent and the downstream links as 
an entry. Thus, when an entry contains a broken link, the 
node will know which neighbor needs to be notified. The 
algorithm uses the information kept by each node to achieve 
distributed cache updating.  

When a node detects a link failure while forwarding 
a packet, the algorithm checks the Data Packets field of the 
cache entries containing the broken link:  

(1) If it is 0, indicating that the node has not 
forwarded any data packet using the route, then no 
downstream nodes need to be notified because they did not 
cache the broken link. 

(2) If it is 1 and the route being examined is the 
same as the source route in the packet, indicating that the 
packet is the first data packet, then no downstream nodes 
need to be notified but all upstream nodes do.  

(3) If it is 1 and the route being examined is 
different from the source route in the packet, then both 
upstream and downstream nodes need to be notified, 
because the first data packet has traversed the route.  

(4) If it is 2, then both upstream and downstream 
nodes need to be notified, because at least one data packet 
has traversed the route.   

The algorithm notifies the closest upstream and/or 
downstream nodes and the neighbors that learned the 
broken link through ROUTE REPLIES. When a node receives 
a notification, the algorithm notifies selected neighbors: 
upstream and/or downstream neighbors, and other 
neighbors that have cached the broken link through ROUTE 
REPLIES. Thus, the broken link information will be quickly 
propagated to all reachable nodes that have that link in their 
caches. 

 3.2 Modules Used 

Module 1: Route Request 

When a source node wants to send packets to a 
destination to which it does not have a route, it initiates a 
Route Discovery by broadcasting a ROUTE REQUEST. The 
node receiving a ROUTE REQUEST checks whether it has a 
route to the destination in its cache. If it has, it sends a 
ROUTE REPLY to the source including a source route, which 
is the concatenation of the source route in the ROUTE 
REQUEST and the cached route. If the node does not have a 
cached route to the destination, it adds its address to the 
source route and rebroadcasts the ROUTE REQUEST. When 
the destination receives the ROUTE REQUEST, it sends a 
ROUTE REPLY containing the source route to the source. 
Each node forwarding a ROUTE REPLY stores the route 
starting from itself to the destination. When the source 
receives the ROUTE REPLY, it caches the source route. 

Module 2: Route Maintenance 

Route Maintenance, the node forwarding a packet is 
responsible for confirming that the packet has been 
successfully received by the next hop. If no 
acknowledgement is received after the maximum number of 
retransmissions, the forwarding node sends a ROUTE 
ERROR to the source, indicating the broken link. Each node 
forwarding the ROUTE ERROR removes from its cache the 
routes containing the broken link. 

Module 3: Cache Updating 

When a node detects a link failure, our goal is to 
notify all reachable nodes that have cached that link to 
update their caches. To achieve this goal, the node detecting 
a link failure needs to know which nodes have cached the 
broken link and needs to notify such nodes efficiently. Our 
solution is to keep track of topology propagation state in a 
distributed manner.  

In a cache table, a node not only stores routes but 
also maintain two types of information for each route: (1) 
how well routing information is synchronized among nodes 
on a route; and (2) which neighbor has learned which links 
through a ROUTE REPLY. Each node gathers such 
information during route discoveries and data transmission, 
without introducing additional overhead. The two types of 
information are sufficient; because each node knows for each 
cached link which neighbors have that link in their caches. 

3.3 Example Usage 

 Example 1: 

 

Fig. 2: Routing Caching in DSR 

We show an example of the cache staleness issue. In 
Figure 2 assume that route ABCDE is active, route FGCDH is 
post-active, and route IGCDJ is pre-active. Thus, node C has 
cached both the upstream and the downstream links for the 
active and post-active routes, but only the downstream links, 
CDJ, for the pre-active route. When forwarding a packet for 
source A, node C detects that link CD is broken. It removes 
stale routes from its cache and sends a ROUTE ERROR to 
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node A. However, the downstream nodes, D and E, will not 
know about the broken link. Moreover, node C does not 
know that other nodes also have cached the broken link, 
including all the nodes on the post-active route, F, G, D, and 
H, and the upstream nodes on the pre-active route, I and G. 
Stale routes have several adverse effects: 
 

 Using stale routes causes packet losses if 
packets cannot be salvaged by intermediate 
nodes; 

 Using stale routes increases packet delivery 
latency, since the MAC layer goes through 
multiple retransmissions before concluding a 
link failure; 

 Using stale routes increases routing overhead, 
since the node detecting a link failure will send 
a ROUTE ERROR to the source node; 

 Using stale routes degrades TCP performance, 
since TCP will invoke congestion control 
mechanisms for packet losses caused by route 
failures. 

 
We use algorithms add Route and find Route to collect 

and maintain the information necessary for cache updates. 
Algorithm add Route is called when a node attempts to add a 
route to its cache table. 

 
Example 2:  
 
We use the network shown in Figure 5.3 for our examples. 
Initially, there are no data flows and all caches are empty. 
We use S-D for Source Destination and DP for Data Packets 
in the tables describing the content of caches.  

 
 

Fig. 3: Networks Used in Routing Protocols 
 

Node A initiates a route discovery to node E, and E sends 
a ROUTE REPLY to A. Each node forwarding the ROUTE 
REPLY creates a cache table entry. For instance, node C 

creates an entry consisting of four fields: the route consisting 
of the downstream links, the source and destination pair, the 
number of data packets the node has forwarded using the 
route, and which neighbor will learn which links through the 
ROUTE REPLY. 

 

            

When node A receives the ROUTE REPLY, it creates a 
cache table entry. 

        

When node A uses this route to send the first data 
packet, it increments Data Packets to 1. Each intermediate 
node receiving the first data packet updates its cache table 
entry. For instance, node C increments Data Packets to 1, 
adds the upstream links to route CDE, and removes the 
Reply Record entry, as the complete route indicates that the 
upstream nodes, A and B, have cached the downstream links, 
CDE. 

       

When node E receives the first data packet, it creates a 
cache table entry  

        

 When a node on this route receives the second data 
packet, it increments Data Packets to 2. Assume that after 
transmitting at least two data packets for flow 1, node C 
receives a ROUTE REQUEST from G with source F and 
destination E. Before sending a ROUTE REPLY to node G, 
node C adds a Reply Record entry to its cache  

         

 
 Reply Record Before sending a ROUTE REPLY to node F, 

node G creates a cache table entry. 
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 When node F receives the ROUTE REPLY, it creates a 
cache table entry  

         

  When node C receives a ROUTE REQUEST from I with 
source H and destination A, it adds the second Reply Record 
entry to its cache. 

 

 A node creates a cache table entry to store source route 
if a route consisting of the downstream links in the source 
route does not exist in its cache. Assume that flow 2 starts. 
When it reaches node D, node D adds the second entry to its 
cache, because the sub-route CDE has been completed by 
flow 1. When receiving the first data packet, node D knows 
that its upstream nodes have cached the downstream link 
DE.  

                      
   

When node F receives a ROUTE REQUEST from node K 
with source J and destination D, it extends its cache entry. 

       

 

4. CONCLUSION & SCOPE FOR FUTURE WORK 
 

4.1 Conclusion 
 

In this paper, we have introduced a distributed 
cache architecture to reduce the route computing load 
caused by the execution of the QoS routing algorithms, 
assuming bandwidth-based QoS requirements. Considering 
the distributed nature of cache architecture, to minimize the 
added complexity to the network, simplicity is a key design 
issue in our approach. Therefore, we have designed and 
incorporated simple yet efficient algorithms and techniques. 
The distributed cache architecture is easily scaled to large 
hierarchical networks. The cached routes are stored in the 
form of multiple interconnected segments across several 
cache elements. Cache snooping was proposed as a 
distributed technique to alleviate the effects of rapid changes 
in the network states so that the route computing load is 
reduced more efficiently. In addition, cache snooping helps 
to increase the tolerance of QoS routing in the presence of 

inaccurate network state information caused by long 
network state update intervals. This means that the 
proposed distributed cache architecture can also reduce the 
overhead traffic caused by the frequent distribution of the 
network state information, while achieving a good 
performance. Also route borrowing was introduced as a 
simple but effective technique to improve the performance 
of the distributed cache architecture. While cache snooping 
improves the cache hit ratio, route borrowing significantly 
increases the cache utilization ratio. We considered realistic 
network topologies, routing algorithms, traffic models, and 
topology aggregation techniques to show that our solution is 
deployed in real life large networks. 

4.2 Scope for Future Work 

As with other applications, there is certainly a scope 
for improvement in this application too. New modules are in 
pipeline for to increase the compatibility of the project. Once 
these improvements have been done, the majority of the 
features that make an application an excellent one would be 
there and the usage would become wider and more 
expensive. Here, there a some of decision’s for to make our 
project effectively and efficiently in the future 

 Implement Non-Adaptive Routing or Link state 
Routing while Message Transfer 

 Send the messages in the Encrypted format show 
that the Network hackers are not able to interfere 
while transmission. 

 Establish Key agreement process between the 
Source and the Destination nodes 

 Implement the Bidirectional route information 

between the source and the destination nodes. 
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