
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1904

An Efficient Way to Querying XML Database Using Natural Language

Prof. P. D. Thakare1, Ms. Snehal Dhole2

1Head of the Department, Dept. of Computer Science, JCOET Yavatmal, Maharashtra, India
2Student, Dept. of Computer Science, JCOET Yavatmal, Maharashtra, India

---***---

Abstract - In today’s world databases are widely used in
many fields like banking, human resources, universities,
corporate, hotels, government organisations etc. Everyone
needs to deal with databases for the extraction of required
data. But everyone does not have knowledge of query
processing languages such as XQUERY or SQL etc. So, it is very
difficult for a common user to retrieve information from the
database using database query languages. Access any kind of
data from database using natural language like English is a
convenient and easy method instead of using formal query
languages such as XQuery, SQL etc. The proposed system can
accept English language sentences and then it is translated
into an XQuery/SQL expression. This XQuery/SQL statement
can be evaluated against an XML database. This query
translation is done by mapping the tokens in the dependency
parse tree of the natural language query into the XQuery
fragments. This paper introduces a novel architecture which
can translate a wide range of natural language including
arithmetic operations queries into formal database queries by
achieving maximum accuracy.

Key Words: XML database, XQuery, SQL, NLQ, XML, NLIDB,
etc.

1. INTRODUCTION

In the todays real world, generally we used natural language,
such as English to obtain the information. Not astonishingly,
supporting arbitrary natural language queries is regarded by
many as the ultimate goal for a database query interface, and
there have been numerous attempts toward this goal.
Nevertheless, two major obstacles lie in the way of reaching
the ultimate goal of support for arbitrary natural language
queries: first, automatically understanding natural language
is itself still an open research problem, not just semantically
but even syntactically; second, even if we could fully
understand any arbitrary natural language query, translating
this parsed natural language query into a correct formal
query would remain an issue since this translation requires
mapping the understanding of intent into a specific database
schema.

We use Database as most commonly and broadly use
application for storing and retrieving large quantity of data
instantaneously and proficiently. However, retrieving data
from these databases is not an easy job. To communicate
with the databases the languages like XQuery, SQL etc. are
used. Using natural language to interact with a database
system becomes very important since the use of database
systems is widespread and their accessibility to common
users is needed to get the complete use of the database

system. The idea of using natural language instead of formal
query languages for retrieving information in a database is a
latest application of NLP called Natural Language Interface
to Databases(NLIDB). NLIDB is a step towards the
development of Intelligent Databases Systems (IDBS) to
allow the users to perform flexible querying in databases.
The use of Natural Language I. Interfaces to Databases
(NLIDB) is to allow the users to ask questions in natural
language and receive responses. Like other systems NLIDB
systems also have some advantages and disadvantages.

There are problems with this interface because we
cannot predict what type of questions the NLIDB can work
with ie. the linguistic coverage of the system is indefinite.
And some linguistic operations which takes place inside the
system can consume time for execution. The operations
performed in a NLIDB system can be considered as two
processing stages; Linguistic processing and Database
processing. In the first stage, the components of natural
language query (NLQ) is mapped and translated into the
corresponding database query fragments. In the database
pro- cessing stage, database management and access is
performed, and the query is executed by the system.

In this paper, we propose a framework for building a generic
interactive natural language interface to database systems.
Our focus is on the second challenge: given a parsed natural
language query, how to translate it into a correct structured
query against the database. The issues we deal with include
those of attribute name confusion (e.g., asked “Who is the
president of YMCA?” we do not know whether YMCA is a
country, a corporation, or a club) and of query structure
confusion (e.g., the query “Return the lowest price for each
book” is totally different from the query “Return the book
with the lowest price,” even though the words used in the
two are almost the same). We address these issues in this
article through the introduction of the notions of token
attachment and token relationship in natural language parse
trees. The input natural language query sentences are
converted to XQuery statements. XQuery is a language for
finding and extracting elements and attributes from XML
documents. XQuery for XML is like SQL for databases [2], [3]

We also propose the concept of core token as an effective
mechanism to perform semantic grouping and hence
determine both query nesting and structural relationships
between result elements when mapping tokens to queries.

2. EXISTING WORK

As many works have been done in the field of natural
language support to database. However almost all the work

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1905

that has been done uses process of applying semantic and
syntactic analysis to get a logical representation of the
sentence followed by a conversion of the representation into
a database query.

Most current NLIDBs first transform the natural language
question into an intermediate logical query, expressed in
some internal meaning representation language. The
intermediate logical query expresses the meaning of the
user’s question in terms of high level world concepts, which
are independent of the database structure. The logical query
is then translated to an expression in the database’s query
language, and evaluated against the database [9].

Fig-1 Intermediate Representation of Language

As figure shows intermediate representation language, the
system can be divided into two parts[6]. One part starts from
a sentence up to the generation of a logical query. The other
part starts from a logical query until the generation of a
database query. In the part one, The use of logic query
languages makes it possible to add reasoning capabilities to
the system by embedding the reasoning part inside a logic
statement. In addition, because the logic query languages is
independent from the database, it can be ported to different
database query languages as well as to other domains, such
as expert systems and operating systems.

Yunyao Li et. al. proposed a framework called NaLIX for
building a natural language interface to XML data. The
relationship between words in the NLQ is obtained by
analyzing output from the MINIPAR dependency parser,
which discovers the grammatical dependencies between
tokens rather than hierarchical components[6]. The tokens
in the input sentence are classified into different categories.
The different parts of the output query are formed with the
help of parse tree and tokens of the input. The XQuery
fragments are joined together to construct the complete
XQuery by determining the grouping and nesting of
fragments. Another work of these authors is DaNaLIX which
is a prototype domain-adaptive natural language interface
for querying XML data. A domain adapter used in this system
checks the available domain knowledge and modifies the
dependency tree by applying some linguistic rules. Domain
knowledge is represented as a collection of rules
representing the mapping between a partial parse tree
containing terms with domain meanings with one expressed
in terms understandable by a system like NaLIX.

NLKBIDB is a combined approach of NLIDB and knowledge-
based interface to database(KBIDB). NLIDB allows
generating accurate SQL query by using the SQL generation
rule based on natural language concept. And KBIDB handles
the sentences which are grammatically correct or incorrect
but SQL generation rules of KBIDB is weaker than that of
NLIDB. For grammatically correct sentences, NLKBIDB
applies the query construction rules of NLI. And for the
sentences with grammar mistakes, it applies rules of KBI for
SQL query construction.

The architecture proposed by Fei Li, and H. V. Jagdish is
known as NaLIR. It comprises of three functional parts: a
first component that transforms a NLQ to a query tree, a
second component that verifies the transformation by
communicating with the user, and a third component that
translates the query tree into a SQL statement. The query
interpretation part, which includes parse tree node mapper
and structure adjustor, is responsible for interpreting the
NLQ and representing the interpretation as a query tree. An
interactive communicator is used to communicate with the
user to ensure that the interpretation process is correct. The
query tree, verified by the user, is then translated into a SQL
statement in the query tree translator and then evaluated
against an RDBMS.

In the system proposed by F.Siasar djahantighi et al. they
introduced a method which prepares an expert system that
can identify synonymous words in any language. It first
parses the natural language sentences, and then the
sentences are transformed to SQL queries. Preprocessor is
used here to create a semantic database from different kinds
of rules of the language and semantic sets for all entities and
all their possible attributes. This database helps to return the
same query for more than one sentence with the same
meaning.

Mapping of the NLQ to SQL query is done by matching the
input with some particular patterns.

Alessandra Giordani and Alessandro Moschitti approached
the problem of converting natural into query language
semantics by the automatic learning of a model from the
lexical and syntactic description of the training data samples.
And these are pairs of NL questions and SQL queries, which
are expounded using a semi-supervised algorithm. Kernel
methods and support vector machines are used in this
system to represent syntactic or semantic relationships
expressed by the pairs.

D-HIRD is an NLIDB system proposed by Rajender Kumal,
Mohit Dul, and Shivani Jinda that accepts a NLQ in Hindi and
then it generates corresponding SQL query, and returns the
result by extracting the data from corresponding databases.
The system uses the Hindi Shallow Parser and lexicon for
linguistic processing of input query. And the domain-
oriented knowledge base is used for identification of the
domain.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1906

Xu Yiqiu et al. proposed an interface design based on
Ontology. It uses WordNet as the elementary lexicon and
defines domain lexicon in addition to that. The language
processing module and database processing module are
linked by intermediate representation called Discourse
Representation Structure(DRS). NLQ sentences are translate
into DRS form, and then convert into SQL query. The
Database Intelligent Querying System (DBIQS) is also an
intermediate representation system which translates the
NLQ to the intermediate form called Meaningful
Representation. And then a query generator generates final
SQL queries by mapping MR to semantic information [7].

However, users may have only a limited knowledge of the
XML structure and may be unable to produce a correct
XQuery expression, especially in the context of a
heterogeneous information collection. The default is to use
keyword-based search and we are all too familiar with how
difficult it is to obtain precise answers by these means. We
seek to address these problems by introducing the notion of
Meaningful Query Focus (MQF) for finding related nodes
within an XML document. MQF enables users to take full
advantage of the preciseness and efficiency of XQuery
without requiring (perfect) knowledge of the document
structure [8][9]. Some of the approaches are given in this
section. There are two main ideas in using keyword search
for databases. First, sets of keywords expressed together in a
query must match objects that are “close together” in the
database (using some appropriate notions of “close
together”). Second, there is a recognition that pure keyword
queries are rather blunt – too many things of interest are
hard to specify. The central idea in Schema-Free XQuery is
that of a meaningful query focus (MQF) of a set of nodes.
Beginning with a given collection of keywords, each of which
identifies a candidate XML element to relate to, the MQF of
these elements, if one exists, automatically finds
relationships between these elements, if any, including
additional related elements as appropriate. For example, for
the query “Find the director of Gone with the Wind,” there
may be title of movie, and title of book with value “Gone with
the Wind” in the database. However, we do not need
advanced semantic reasoning capability to know that only
movies can have a director and hence “Gone with the Wind”
should be the title of a movie instead of a book. Rather, the
computation of mqf(director, title) will automatically choose
only title of movie, as this title has a structurally meaningful
relationship with director. Furthermore, it does not matter
whether the schema has director under movie or vice versa
(for example, movies could have been classified based on
their directors). In either case, the correct structural
relationships will be found, with the correct director
elements be returned. Schema-FreeXQuery greatly eases our
burden in translating natural language queries in that it is no
longer necessary to map the query to the precise underlying
schema. We will use it as the target language of our
translation process. The relationships between words in the
natural language query must decide how the corresponding
components in XQuery will be related to each other and thus
the semantic meaning of the resulting query. We obtain such

relationship information between parsed tokens from a
dependency parser, which is based on the relationship
between words rather than group of words [14] [15].

3. ANALYSIS OF PROBLEM

Though, existing system is using to query information from
the database using natural language, there are some
restrictions to this system. The limitations of existing system
are as follows:

 The current system does not support the aggregate
functions, grouping functions and arithmetic functions.

 There is scope of improvement in current system in
terms of accuracy.

There are some other problems to achieve the goal of
transforming natural language to SQL/XQuery such as
automatically understanding natural language semantically
but even syntactically is an open research problem. Second,
even if we could fully understand any arbitrary natural
language query, since this conversion requires mapping the
understanding of intent into a specific database schema,
translating this parsed natural language query into a correct
formal query would remain an issue.

We will work extensively to overcome the limitations of
existing system to achieve an anticipated goal.

REFERENCES

[1] “FLWOR - An Introduction to the XQuery FLWOR
Expression.”
http:// www.stylusstudio.com/xqueryflwor.html.
[September 2015].

[2] Yohan Chandra. “Natural Language Interfaces to
Databases.” http://www.ijritcc.org. [August 2015].

[3] “XML Tutorial.” http://wws.w3schools.com. [August
2015].

[4] George Papamarkos, Lucas Zamboulis, Alexandra
Poulovassilis.“XMLDatabase.”http://students.mimuw.edu.pl
/pd291528/zbd/materialy/XmlDatabases.pdf. [August
2015].

 [5] Y. Li, H. Yang, and H. Jagadish, “Nalix: A generic natural
language search environment for xml data,” ACM
Transactions on Database Systems (TODS), vol. 32, no. 4, p.
30, 2007.

[6] Natural language Interface for Database: A Brief review
Mrs. Neelu Nihalani, Dr. Sanjay Silakari , Dr. Mahesh
Motwani. IJCSI International Journal of Computer Science
March 2011 ISSN (Online): 1694-0814

 [7] X. Wu, T. Ichikawa, and N. Cercone, “Natural language,
knowledge, and database,” in Knowledge-Base Assisted
Database Retrieval Systems, pp. 1–13, World Scientific, 1996.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1907

[8] Y. Li, I. Chaudhuri, H. Yang, S. Singh, and H. Jagadish,
“Danalix: a domain-adaptive natural language interface for
querying xml,” in Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, pp. 1165–
1168, ACM, 2007.

[9] H. J. Yunyao Li, “Schema-free xquery,” in VLDB 04
Proceed- ings of the Thirtieth international conference on
Very large data bases, pp. 72–83, IEEE, 2004.

[10] A. Shah, J. Pareek, H. Patel, and N. Panchal, “Nlkbidb-
natural language and keyword based interface to database,”
in Advances in Computing, Communications and Informatics
(ICACCI), 2013 International Conference on, pp. 1569–1576,
IEEE, 2013.

[11] F. Li and H. Jagadish, “Constructing an interactive
natural language interface for relational databases,”
Proceedings of the VLDB Endowment, vol. 8, no. 1, pp. 73–84,
2014.

 [13] A. Giordani and A. Moschitti, “Semantic mapping
between natural language questions and sql queries via
syntactic pairing,” in International Conference on
Application of Natural Language to Information Systems, pp.
207–221, Springer, 2009.

[14] X. Yiqiu, W. Liwi, and Y. Shi, “The study on natural
language interface of relational databases,” in 2010 The 2nd
Conference on Environmental Science and Information
Application Technology, 2010.

[15] H. Li and Y. Shi, “A wordnet-based natural language
interface to relational databases,” in Computer and
Automation Engineering (ICCAE), 2010 The 2nd
International Conference on, vol. 1, pp. 514–518, IEEE,2010.

