
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3164

Improve Client performance in Client Server Mobile Computing System
using Cache Replacement Technique

Sanjay Kumar 1, Sandhya Umrao2

1School of Computing Science & Engineering, Galgotias University, India
Galgotias College of Engineering and Technology, Greater Noida, India

--***---

Abstract: Mobile computing is becoming more and more
popular and common. In the near future, people will be
able to use mobile computers (Laptops, palmtops, etc.) to
do various computing tasks and to access the Internet from
anywhere and anytime at will. The development of wireless
facilities and mobile computers has made this goal
possible, and some of the mobile applications exist already.
But the situation is still far from ideal.
There is still a lot of work to be done to reach the goal.
Compared with a wired network environment, a mobile
computing network has a lot of problems. A wireless link
has low bandwidth and is unstable. Mobile devices are
resource limited, like memory, storage, display area,
power, etc. All these factors cause problems for mobile
applications. Mobile network users usually suffer from
long latencies and frequent disconnection, mobile
applications suffers from bad performance. In recent years,
a lot of researches have been done to deal with these issues,
to improve the mobile application performance. The
proposed techniques include caching, prefetching, etc. The
goal of this project is to study the techniques to improve
client performance in Client/server mobile computing
systems, to identify which of the techniques are most
promising. We designed and implemented a mobile
client/server application – a Mobile System. Based on our
study on mobile computing techniques and the features of
the mobile application, we identified some caching and
prefetching techniques and integrated them into our
mobile application. Through experiments, we studied the
impact of these techniques to the performance of the
application and concluded that the method is a better
solution to improve the performance of the mobile
application.

Key Words: MH-Mobile Host, GDS –Greedy Dual Size,
LRU-Least Recently Used, LFU-Least Frequently Used,
FIFO-First in First out, LFF-Largest File First.

1. INTRODUCTION

1. Mobile Computing Background

With the advent of cellular technology and portable
computers we are on the verge of a new computing
paradigm. This computing paradigm is now widely
known as “Mobile” or “nomadic” computing]. In recent
years Computer and Communication technologies have
been developing fast. Using computers and accessing

network information resources have become a necessary
part of our daily work and daily life. There are numerous
computers around the world that are connected by
various kind s of networks. There are numerous
applications that allow people to do almost everything
they want. But, this situation is mostly restricted to users
at fixed locations with static desktop computers and
static wired networks.

 There is still a lot of time we are mobile – moving
among offices, homes, planes, trains, automobiles,
conference rooms, and classrooms and such. There is
need to access computing resources not only when
stationary but also while mobile or in transit

 As technology improves in the area of wireless facilities
and mobile computers, mobile computing has become
feasible. As of today, a variety of advanced mobile
devices, some mobile wireless systems and mobile
computing applications exist already. For example,
people can send and receive emails and access Internet
web sites using mobile computers via wireless networks.
The future trend of telecommunication is to extend the
telecom and computing services to mobile users, to break
the restriction of user locations, to allow people access to
computing resources anywhere and anytime at will.
However, this is not a trivial task. Compared to static
systems, mobile computing systems are constrained in
important ways. These constraints are intrinsic to
mobility, and are not just artifacts of current technology.
Mobile elements are resource -poor relative to static
elements. Wireless links have low bandwidth and are
unstable. Mobile elements must operate under a much
broader range of networking conditions. The nature of
wireless communication media and the mobility of
computers combine to create fundamental new problems
in networking, operating systems, and information
systems].

 Mobile computing is still at its early stage. In recent
years there has been a lot of research in the mobile
computing area. It has still a long way to go to reach the
goal of connecting anywhere and anytime.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3165

2. Mobile Computing Systems –
Architecture and Main Components

1. A typical mobile computing system consists of
the following components.

2. A static communication backbone using wired
means

3. A set of static hosts
4. Sets of mobile hosts (MHs) that can

communicate with a predetermined static host
5. Mobile subnets/wireless cells.

The following figure displays the architecture of a
general mobile computing system.

The elements in a mobile computing system fall into two
distinct sets: mobile units and fixed hosts. Some of the
fixed hosts, called Mobile Support Stations, are
augmented with a wireless interface to communicate
with mobile units, which are located within a radio
coverage area called a cell. A cell could be a real cell as in
cellular communication network or a wireless local area
network that operates within the area of a building. In
the former case the bandwidth will be severely limited
(supporting data rates on the order of 10 to 20 Kbps). In
the latter, the bandwidth is much wider – up to 10 Mbps.
Fixed hosts will communicate over the fixed network,
while mobile units will communicate with other hosts
(mobile or fixed) via a wireless channel

2.1. Mobile Software System

The previous sections are dedicated to mobile hardware
systems. In this section we discuss mobile software
systems. A mobile software system contains the
following components:

1. Mobile operating systems for mobile devices.
2. Application client software running on mobile

computers
3. Application server and/or database server

software on workstations in wired networks

4. Mobile middleware

 The following figure displays the architecture of the
software system for a mobile client.

The fundamental limitations of mobile hardware systems
have important impact on the design of mobile software
systems. The software system has to be small to meet the
memory requirement; the algorithms have to be efficient
to optimize the utilization of limited computing power
and battery. In the following we discuss the operating
systems, middleware, and applications respectively.

2.1.1 Mobile Operating Systems

The mobile operating system is responsible for managing
physical resources, power consumption and
communication interface. A mobile operating system is
composed of the computer kernel, the power
management facility, and the real -time kernel. The
computer kernel is the entity that manages access to
physical resources, such as CPU and disk space. The
power management facility is responsible for reducing
power consumption. The real -time kernel is responsible

for managing the communication link.

The currently available mobile operating systems include
Windows CE from the Microsoft Corporation, Palm OS
from Palm, and Symbian EPOC from the Symbian LTD.
These operating systems differ in memory requirements,
the range of applications that can be supported,
communications capability and interfaces.

2.1.2 Mobile Middleware

Mobile middleware is the layer of software that lies
between the mobile applications and the underlying
wireless networks. The middleware can be found at 3
different locations: the mobile client, the mobility
gateway, and the information server. These middleware
at different locations work together to shield users from

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3166

the underlying wireless networks and the mobility of the
users.

The range of services provided by a mobile middleware
system to the application layer may include adaptivity
and QoS, service management, TCP/IP functionality,
disconnected operations, proxies and agents,
communication resilience, and continuous data
synchronization. By delegating the complex tasks of
dealing with wireless communications to the mobile
middleware layer, individual applications can focus
mainly on their own application –specific logic, thus
significantly reducing their complexity. Mobile
application developers need only to develop their
applications according to a mobile API specification. With
a standardized mobile API, the applications that comply
to such an API will be able to run across different
wireless networks. Interesting mobile and terminal
aware applications can be written to make full use of the
intelligence embedded within the mobile middleware.

 Some tasks which are common to applications in a
related area can be put in the middleware. For example,
location information service and distance calculation can
be included in middleware and serve various location-
based applications.

 Mobile middleware plays a central and brokerage role
in the interaction between applications and the external
wireless environments, as well as with the internal
system resources. This factor makes the middleware one
of the most interesting and challenging components of
the mobile software systems.

2.1.3 Mobile Computing Applications

The application layer occupies the pinnacle of the mobile
software system. Like the other layers of mobile software
systems, designing mobile applications has to take into
account of the fundamental limitations of mobile
systems. Mobile devices should not be considered
general -purpose computers to run complex simulations
and large applications due to their limited resources.
Applications for mobile computers can be divided into
the following five categories:

1. Standalone applications such as games or
utilities

2. Personal productivity software (word
processors, presentation software, calendars);

3. Internet applications such as email, WWW
browsers

4. New location-aware applications such as tour
planners and interactive guides.

5. Ad-hoc network and groupware applications

 The Internet applications constitute a very interesting
and challenging category. This is the category we are

interested in for this project. There are abundant Internet
applications for desktop computers today. To introduce
these applications into the mobile market place is an
important ongoing trend with a high market potential.
The applications getting the most attention are the ones
that best take advantage of the mobility of wireless
Internet devices, and which suffer least from the
limitations of wireless platforms.

 It's not surprising that e -mail is a top priority. E -mail
is, in many ways, the perfect application for wireless
devices, since technological constraints of small screen
size and limited bandwidth do not limit e -mail as much
as they do other applications. Another important mobile
computing application is WWW mobile browser. It is the
key part to extend the WWW services to mobile hosts.
There are a number of browsers for handheld computers
already. Since the cost of wireless services is high,
general purpose web browsing might not be an attractive
task for mobile users. Mobile browsers designed to
provide a specific information service (e.g., financial
information, daily banking, stock trading, weather
information …) could be of more interest.

 With the prospect that mobile devices may become the
de facto standard for purchases, mobile e-commerce is a
big business, and, as we might expect, it is another one of
the top priorities for application developers. Finally,
location -based services, for instance, providing users
with information about restaurants they are close to is
one of the most obvious advantages of the wireless
Internet.

 Developing applications for mobile systems is an area
full of imaginations, challenges and with huge future
market potential.

3: RELATED WORK

-Improving Performance of Mobile Computing
Applications

A mobile computing system has its intrinsic constraints.
Mobile devices are resource poor and wireless networks
have low bandwidth and are unstable; this causes mobile
computing applications to suffer from bad performance
and mobile users to suffer fro m long latency. A lot of
research has been carried out in this area and various
techniques have been proposed to deal with this issue.
The effort of improving performance of mobile
computing systems contains every aspect of mobile
environment, from hardware aspect to software aspect,
from proper network configuration to efficient
application design.

In this project we concentrate on techniques to improve
mobile computing performance at the application level.
We research techniques to reduce user perceived latency

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3167

and effective wireless bandwidth usage in mobile
computing applications.

 For mobile computing users, they always want fast
access to networks and low cost.

This means short user perceived latency and small
bandwidth consumption. Research in recent years in
mobile computing has proposed many techniques for
optimizing data transfer over wireless links and utilizing
mobile device resources. The commonly used techniques
include caching, prefetching and compression. Each
technique has its strength and weakness. Many of the
techniques can be used in different combinations in
different circumstances. These techniques often trade off
one resource for another. For example, compression
trades off computation for bandwidth, caching trades off
memory for latency (and bandwidth), and prefetching
trades off bandwidth for latency. The utility of these
techniques thus depends on the service desired, the
device, the network characteristics and the features of
the application.

 In the following sections, we review and discuss these
techniques respectively. To keep the project consistence
and make it easy to explain, we refer to all data objects in
this chapter as files.

3.1. Caching

In a mobile computing environment, the bandwidth of
the wireless link is very limited.

This implies that each mobile client should minimize
wireless communication to reduce the contention for the
narrow bandwidth. Caching of frequently accessed data
at the mobile clients has been shown to be a very useful
and effective mechanism in handling this problem.

 Caching improves the efficiency and reliability of data
delivery over the network. A cache in the mobile client
can serve a user’s request quickly and reduce user
perceived latency. When a user makes a request, the
client checks the cache, if the required information is
there, the client replies with it; otherwise, the client
fetches it from the information server, replies to the user,
and stores a copy in the cache as well. Other benefits of
caching include energy savings and cost savings.

A caching strategy consists of the following components:
cache size and replacement strategy. For mobile devices,
since cache storage is limited, what to cache, when to
cache, how long to cache, and how to replace the cached
data have to be carefully considered. File size and data
type impact the caching policy. Research in this area has
resulted in many caching strategies, and they have been
widely used in network applications, for example, in web
browsers and mobile applications.

 The efficiency of a caching strategy is measured by the
following performance metric.

1. The cache hit rate: the ratio of the number of
files sent to users from the cache to the total
number of files served from the cache and
content servers on the Internet.

2. The byte hit rate: the ratio of the average size of
files sent to users from the cache to the average
size of all the files served from the cache and
content servers on the internet.

 The byte -hit ratio gives more information of the
network bandwidth. As files have different sizes, only
recording the cache hit rate will not give a correct insight
on how the strategy impacts the network bandwidth.

 Cache consistency maintenance is another important
issue to consider when applying caching in an
application. Due to limitation of battery power, mobile
computers may often be forced to operate in a sleep or
even totally disconnected mode. As a result, the mobile
computer may miss some cache invalidation reports
broadcasted by a server, making the cached file out -
dated or forcing it to discard the entire cache contents
after waking up.

3.1.1 What to Cache and When to Cache

If there is space and the file is not dynamic, the file
should always be cached. When space is insufficient,
there are three simple strategies for deciding which files
to cache: "cache all", which removes other files to make
space; "threshold", the same as the previous strategy, but
only caching files below a certain size; and "adaptive
dynamic threshold," whereby the maximum file size
threshold alters dynamically.

3.1.2 Cache Replacement Schemes

File replacement strategies have a great impact on cache
performance. The replacement process is tightly related
to the cache size: if an infinite cache exists, there is no
need for such a file removal process since all the files that
enter the cache are kept for ever. In reality, the cached
files have to be replaced because of a lack of memory
space, and the choice of the next file to be removed is
quite important. When deciding which file to discard, the
key point is to discard the file that is most unlikely to be
used again.

 Factors that impact cache performance include: number
of references to the files, the file size, and the file time -to-
live, and file retrieval time. For example, consider the
factor of file size. For all caches, an upper limit is defined
for the size of the caching area. If the cache is full when it
receives a request to store a large file, what is the best
strategy to maximize caching benefit? Is it more sensible

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3168

to replace a single large file than several smaller ones? It
becomes more and more clear that an appropriate
algorithm for selecting the files should consider several
factors. However, the appropriate algorithm to combine
these factors has not been defined yet.
The file replacement strategy can be split in two phases:
first, the documents are sorted in order to determine the
removal order; second, one or more documents are
removed from the removal list. Cache replacement
strategies can be divided into two groups: on -demand
replacement strategies and periodic replacement
strategies. In an on -demand replacement strategy, the
removal process is started once the cache is full or the
remaining amount of memory is not enough to store the
new incoming file. In a periodic replacement strategy,
files are removed after a certain amount of time. The
possible disadvantage of the on -demand replacement
strategy is that if a cache is nearly full, then running the
removal policy only on -demand will invoke the removal
policy on nearly all document requests, if removal is time
consuming, it might generate a significant overhead. On
the other hand, periodic removal reduces the hit -ratio
because files are removed earlier than required. In the
following we study different cache replacement
strategies.

1. Random replacement: A random replacement
simply discards a randomly chosen file.

2. The least recently used (LRU): The simplest and
most common used cache management
approach, which removes the least recently
accessed files until there is sufficient space for
the new file. This approach not only stores data
also the time that each file was last referenced.
LRU is widely used as a replacement policy. It is
well understood and shown to perform well in a
wide variety of workloads.

3. The least frequently used (LFU): LFU keeps
track of the number of times a file is used and
replaces the least frequently used file to make
room for an incoming file. LFU is more complex
to implement than LRU. In LRU, a referenced file
is just placed at the head of removal list. In LFU,
the referenced file needs to be placed in a sorted
(by frequency of use) list and this in general is
more complex. One modified version of LFU is
LFU-aging. LFU-aging allows an incoming file to
replace only blocks with a frequency count of 1.

1. First-in-first-out (FIFO): discards the file that is
the oldest in the cache. It is easily implemented
as a circular buffer.

2. Largest-file-first (LFF): discards the largest file
in the cache.

 There are a lot of hybrid strategies and generalizations
of the above caching strategies.

Some generalizations of LRU attempt to make it more
sensitive to the variability in file size and retrieval delays,

like Greedy Dual algorithm and Greedy -Dual-Size (GDS).
Some generalizations of LRU attempt to incorporate
access frequency information into LRU, like LRU -K.

All the above methods only consider a single factor.
Research has shown that a single or a combination of
several parameters in the file replacement strategy is not
enough to achieve higher performance. New methods
have been proposed in. In these methods, each document
is assigned a priority according to which the removal
process will select the next document to be replaced. The
priority is computed according to a certain mathematical
model. In each model, the different factors are assigned a
weight which is calculated using weight optimization
methods or simulation techniques

3.2 Prefetching

Prefetching is a technique which allows a client to
download information in advance, ready for the user to
use later. Prefetching tries to reduce the perceived
latency by look -ahead. If a user can anticipate what files
he will fetch in the future, it is possible to preload these
files to the client before they are requested.

The idea of prefetching stems from the fact that, after
retrieving some information (webpage, file, etc), the user
usually spends some time viewing and processing the
information. During this period, the connection link is
idle, if we can take advantage of this phenomenon by
prefetching some information that will likely be accessed
soon to the local machine, there will be no transmission
delay when the user actually requests them. The
perceived latency can then be reduced to that for fetching
information from local disk or file servers on local nets.

Prefetching is only effective when future access pattern
can be determined. The key challenge in prefetching is to
determine "what to prefetch, when to prefetch, and how
much to prefetch" so that performance will be enhanced.
The difficulty of realizing efficient prefetching lies in the
fact that it is impossible to predict exactly what a user is
going to need and hence some prefetched files may never
be used. In mobile network environments, link
bandwidth is a very scarce and high cost resource;
prefetching information based on inaccurate prediction
which are not used by the user will waste precious
bandwidth. For the overall system, applying a prefetching
scheme may increase the network load, because
prefetching can cause downloading files that are not
used. Therefore it degrades the whole system
performance. So, for prefetching in network applications,
there is tradeoff between user perceived latency and
bandwidth. For applications with an obvious access
pattern, a prefetching scheme is suitable. For applications
with an arbitrary access pattern, a prefetching scheme is
not suitable.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3169

 The prefetch problem has two aspects: the first one i s
how to estimate the probability of each file being
accessed in the near future. In general, this probability
changes with time as the user issues new requests. The
second aspect is how to determine which files to prefetch
such that the overall system performance can be
optimized relative to some criteria. The performance of a
prefetch scheme is measured by the following criteria:

1. Hit rate: refers to the percentage of user
requests satisfied by the prefetched files.
Generally, the higher the hit rate, the more
reduction in user -perceived latency is achieved.

2. Successful prediction rate: the probability of a
prefetched file being used eventually. A high
successful prediction rate indicates that less
bandwidth is wasted due to prefetching unused
files.

Information on user's future access may be derived from
server's access statistics, client’s configurations,
application's nature, user's personal preference, and
user's planning tools.

 In the following we review various existing prefetch
techniques. These techniques are mainly targeted for
Internet web access, but since the World Wide Web is a
very common and typical network application, these
techniques can be applied to other network and mobile
computing applications based on the features of the
techniques and the applications.

3.2.1 Statistical Prefetching vs. Deterministic
Prefetching

In, statistical and deterministic prefetching schemes for
Internet Web access are discussed. In a statistical
scheme, the interdependence of web page accesses are
calculated periodically based on the most recent access
logs; web pages with interdependencies higher than a
certain threshold are grouped for prefetching. Statistical
prefetching can potentially have wide applications as the
process can be easily automated. However, by its
speculative nature, some bandwidth will be wasted, thus
it can increase total bandwidth consumption. There is a
general tradeoff between bandwidth and latency here. If
we reduce the threshold for statistical prefetching, the
latency may improve, but at the price of increased
bandwidth consumption. Unfortunately, bandwidth is
still a scarce resource in most networks, particularly over
wireless links and long distance paths. Thus statistical
prefetching has to be used with great care to avoid
bandwidth waste. Note that, although the perceived delay
for prefetched files are very low, the retrieving delay for
non -prefetched files may actually increase as a result of
the extra traffic load caused by prefetching. When traffic
is heavy, aggressive prefetching, such as "get all links",
may actually increase the average latency of all accesses.

It is concluded in that, unless the traffic is very light or
the prefetching efficiency is very high, statistical
prefetching may not necessarily reduce perceived
latency.

 In a deterministic scheme, prefetching is configured
statically by the users as part of their personalized user
interface, or even by page designers as part of the content
design. Deterministic prefetching is the most
conservative types as it often has little or no bandwidth
overhead, although its scope of use is limited.
Nevertheless, when users know what needs to be
prefetched, it can reduce perceived latency, and to some
extent, even ease congestion at very little cost. Some
potential uses of deterministic client-initiated
prefetching are discussed. The following are some of the
examples:

1. Batch Prefetching: Web pages that are read on a
regular basis, such as on-line newspapers,
weekly work reports, can be prefetched in a
batch mode during the less busy period.

2. Start-up prefetching: when a browser is started,
a set of pages users need to look at that day may
be prefetched in the background.

3. Pipelining with prefetching: for some
information services where users can easily
specify the sequence of pages to be viewed, such
as on -line newspapers, stock market prices, and
headline tracking services, we can potentially
pipeline the operations by fetching the next page
while the user is looking at the current one.

3.2.2 URL Graph Based Prefetching vs. Context-
Specific Prefetching

Prefetching algorithms used in today’s commercial
products are either blind or user -guided. A blind
prefetching technique does not keep track of any user
web access history, it prefetches document based solely
on static URL relationships in a hypertext document.

User-guided prefetching techniques are based on user -
provided preference URL links.

 Research in prefetching is targeted at intelligent
predictors based on user access patterns. A popular
approach is to represent the access pattern as a URL
graph. The URL graph based approaches are
demonstrated effective for documents that are often
accessed in history. However, they are unable to pre -
retrieve those documents whose URLs are never touched
before. A new approach, context -specific prefetching, is
proposed in, which overcomes this limitation. It relies on
key words in anchor texts of URLs to characterize user
access patterns and on neural networks over the
keyword set to predict future requests.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3170

3.2.3 Real-time Online Adaptive Prefetching vs.
Off-line Prefetching

In, a general prefetching scheme is describe for real -time
online web access.

We refer to it as an adaptive network prefetch scheme.
The adaptive network prefetch scheme comprises a
prediction module and a threshold module. The
prediction module computes the access probability,
which is defined as the conditional probability of a file
being requested by the user in the near future, given the
file currently being used. The threshold module
computes a prefetch threshold for the information server
based on network and server conditions as well as the
costs of time and bandwidth to the user, such that the
average delay is guaranteed to be reduced by prefetching
files as long as their access probability is greater than its
server's prefetch threshold. The prefetch threshold is a
function of current system condition and certain cost
parameters. The prefetching scheme works in the
following way: Basically, whenever a new file is
requested, the prediction module updates the local
access history, if needed, and computes the access
probability of each file somehow related to the current
file. At the same time, the threshold module computes the
server's prefetch threshold. Finally all the files with
access probability greater than the server's threshold are
prefetched.

This prefetch scheme is a general one that may be
applied to almost any network application to decide what
information to prefetch. For specific network information
access application, the problem of applying this
prefetching scheme is to decide the prediction algorithm
and the algorithm to compute the server threshold. Also
described a prefetching scheme to deal with
disconnectivity of mobile clients. This scheme allows
users to prefetch a group of files together for the user
who is about to disconnect from the network. In this case,
the prefetching threshold is not applicable. The
prediction module is still used. At first the user specifies
an upper bound for the bandwidth cost or the amount of
data to be downloaded. The user also specifies some
initial files. The system starts t o download files. First
initial files are downloaded, after downloading each file,
access probabilities of other files are calculated, and the
file with the highest access probability is downloaded.
This process continues until the total bandwidth cost or
the total amount of data downloaded exceeds the user
specified limit. More sophisticated functions can be
added to select files more intelligently. Research has
shown that prefetching is a good approach to reduce
latency for network applications. However, it must be
implemented in such a way that the overall system
performance can be improved, and the tradeoff between
saving user's time and bandwidth usage must be
considered.

4. DESIGN CLIENT/SERVER MODEL

In the designing, we develop a mobile computing system.
The first benefit of this work is that this is an interesting
mobile computing system. The second benefit is that it
can be used as a base to study the effect of various
prefetching and caching techniques on the performance
of the application.

 This Design is organized as follows. Section 4.1 gives a
description of the system. Section 4.2 covers the system
software design and architecture. The features of the
system are analyzed. The major components and their
cooperation relationship are discussed.

4.1 System Description

The Mobile is a client/server network system running on
a user's handheld computer and an Internet server.
When a user is on the move (traveling, driving, exploring
the nature), with a computer at hand and with the
computer connected to the Internet server via a wireless
network, also with a GPS device integrated in the
computer, he will always see where he is and where he is
heading to. He will never worry about getting lost. It
downloads the object segment around the user's location
from the Internet server, and displays the user's moving
trace and the map segment on the computer screen. The
user can also choose to view the object at different
resolution levels. Whenever the user changes the object
resolution level or moves out of the current object
segment, the client detects the change and automatically
downloads the next object segment and displays the user
trace and the new object segment.

4.2 System Analysis and Design

Object oriented analysis and design approaches are used
to develop this system.

4.2.1 Client/Server Model

As described in Section 4.1, the Mobile is a client/server
network system. The client resides in a mobile computer
(handheld, palm…) featuring small memory, small
storage, small display, slow performance, slow network
bandwidth, less functionality, and less user friendly input
method. The server resides in a large computer or
workstation in the Internet that has large memory, large
storage, and fast processing ability. The following figure
shows the Mobile client/server model.

Figure 4.1: Mobile Client/Server Model

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3171

In this paper, we concentrate on a single server and a
single client model. Big objects of different resolution
levels are stored in the server. The server listens to client
requests, searches and processes the required object
segment, and returns it to the client. The client traces a
user's move with the assistance of the GPS system, and
requests relevant object segments from the server. Upon
receiving the requested object segment, the client
displays the object segment and user trace on the hand
held computer screen. Whenever the user moves out of
the current object segment or the user requests a new
resolution level, the client issues a new request for a new
object segment.

4.2.2 Main Components and System Architecture

The Figure 4.2. Shows the main components and
architecture of the system.

(a) Basic Transmission units: Request and
ObjectUnit are the two basic data units
transmitted between client and server. A
request contains user location (latitude,
longitude), object resolution level (0 - 4) and
user moving direction (0-NE; 1-NW; 2-SW; 3-
SE). An ObjectUnit contains a small object
segment and the coordinates (latitude and
longitude) of the top-left point and bottom-right
point of the object segment.

Figure 4.2: Main Components and Architecture of
Mobile System

Main components at the client side:

(b) ObjectInterface: This is a GUI user interface that

resides in the client. It contains a canvas for
displaying the object and user trace and a panel
containing three buttons: ZoomIn, ZoomOut,
and Exit, which allow the user to view a object at
different resolution levels or exit the application
at any time. The display screen size is 160
pixels*160 pixels. The displayed object size is
160 pixels*150 pixels.

Figure 4.3: GUI of the Mobile System

(c) TraceTracker: It traces user movement (trace of
locations) and returns the user’s next location.

(d) CacheManager: It is the storehouse of object
segments at the client side. Upon receiving a new request
from ObjectInterface, it searches its object cache for the
requested object segment, if found, send it to the
ObjectInterface, otherwise, pass the request to the client
agent to retrieve it from the server on the Internet.

(e) ClientAgent: Its responsibility is to communicate with
the server, pass requests to the server, and receive

requested object segments from the server.

Main components at the server side:

(a) ServerAgent: It is responsible for the communication
with the ClientAgent. When receiving a request from the
ClientAgent, it passes the request to the server to search
for the required object segment and sends it to the
ClientAgent.

(b) Server: It is responsible for loading and storing all
initial big objects. When receiving a request from the
server agent, it searches and fetches the required object

segment and passes it to the ServerAgent.

4.2.3 Multi Thread Programming

Three threads are implemented in the system. Thread1
traces the user's movement and displays the user trace
and object on the screen. It also informs Thread2 of new
requests whenever the user moves out of the current
object segment or the user requests a new object
resolution level.

Thread2 manages the object cache, responds to
Thread1’s requests and stores object segments received
from Thread3. It listens to Thread1, whenever a new
request comes, it searches the object cache for the
required object segment, if found, it returns the object
segment to Thread1, if not found, it passes the request to
Thread3. It collects object segments received from
Thread3 and puts them in the object cache. Caching and
prefetching schemes are implemented in Thread2.

Thread3 is responsible for communication with the
server, fetching required object segments from the server
and passing them to Thread2. Thread1 and Thread2
communicate through a request box and an object box.

ZoomIn ZoomOut

 Exit

Display Area

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3172

Requests pass from Thread1 to Thread2 through the
request box. Object segments pass from Thread2 to
Thread1 through the object box. Thread2 and Thread3
communicate through a request queue and an object
buffer. Requests missed from the cache and generated by
the prefetching are put in the request queue by Thread2.
Thread3 fetches requests from the request queue and
retrieves object segments from the server. The received
object segments are put in the object buffer. Thread2
collects the object segments in the object buffer.

 The following figure shows the three-threaded
architecture of the system.

This three -thread implementation is to insure the real
time feature of the application. Thread1 continuously
tracks the user’s move and displays the user trace and
object (if available) while Thread2 and Thread3 are

searching and retrieving required object segments.

Figure4.4: Three–threaded Architecture of the
System

Figure4.5: Sequence diagram of Client / Server Model

4.3 - Server Algorithm:

Load in objects

Establish socket connection between ServerAgent and
ClientAgent

Send object meta data to client

While true

{

Get request from client

If (request=End) exit;

Else

{

Search object segment

Send object segment to client

End if get stop signal from client

}

}//end of while

4.4 -Client Algorithm:

Establish socket connection between ClientAgent and
ServerAgent

Receive object meta data from server

Thread1 start running

Thread2 start running

Thread3 start running

 Thread1 Algorithm:

 get location; //from log data

update logtrace; //user trace

get direction; //from loctrace

form a new request and put it in ReqBox;

get object segment frame; //from DataManager

display trace;

while(true)

{

get location //from log data)

if (end of file) put End request in ReqBox, exit;

update logtrace; //user trace

get level; //from user input)

get direction; //from loctrace

form a new request;

if request matches current object segment frame

{

check ObjectBox

if required object arrived, display object and trace

else

display trace

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3173

}

else //a new request

put new request in the ReqBox.

}//end of while

 Thread2 Algorithm:

Get the first request from ReqBox;

Put the request in ReqQueue;

Execute prefetching;

while(true)

{

Collect object segments from ObjectBuffer if there is any;

If cache full, replace object;

check ReqBox

if (no new request)

{

check if current request has been met

 if not

 {

search cache,

if required object found, put it in ObjectBox.

 }

}

else // new request arrive

{

if (request=end), put End request in ReqQueue, exit;

else

{

clear ReqQueue;

search cache for required object segment,

if found, put it in ObjectBox;

else put request in ReqQueue.

Execute prefetching;

}

}

}//end of while

 Thread3 Algorithm:

while(true)

{

if there is request in the ReqQueue, get request

if (request==end)

send End request to server, exit;

else

{

send request to server

receive object from server

put object unit in ObjectBuffer

} }// End of while

5. PROBLEM ANALYSIS

Due to low wireless bandwidth and slow processing
ability, a user may suffer long latency. Our study
objective is to find techniques to improve the application
performance and at the same time efficiently use the
precious wireless bandwidth.

 User perceived latency is the time interval from the
time a user is sending a request until the time the
required object is displayed on the screen. First we
analyze the factors of user perceived latency. In the
mobile application, big objects are stored in the server as
Image objects. Each time when the client requests a new
object segment, the server filters out the required object
segment from its big objects, encodes the object segment
into GIF data, and sends it to the client. At the client side,
the received GIF data is converted into an Image object
and displayed on the palm screen. The user perceived
latency is mainly composed of three factors: object
transmission time, object processing time and object
displaying time.

Object transmission time is the time interval to transmit
the object GIF data of an object segment from server to
client.

Object processing time is the time interval to decompress
object GIF data of an object segment and convert it into
an Image object.

Object displaying time is the time interval to display an
object segment on the computer screen.

The object displaying time is very short and can be
neglected. The transmission bandwidth between client
and server is low which causes long object transmission
times, and the process for the client to decompress and
convert GIF data into an image object takes a long time.
Therefore users experience long latency to see the
required object segment. Finding good techniques to
reduce user perceived latency and at the same time,
efficiently use wireless bandwidth is the objective of our
study.

5.1. Caching:

Within the memory limit, cache as much as possible,
replace the object segment, which is efficient to the
current user location when necessary.

At the client side, object segments received or prefetched
from the server are stored in the object cache. Based on

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3174

the memory space of the computer and object segments
size, we set the maximum object cache size to be 50
object units. Within this limit, we cache as much as
possible. When the object cache is full and there is a new
object segment, we choose to remove the object segment
in the cache that is efficient to the current location and to
make room for the new object segment.

5.2. Proposed Cache Replacement

Technique:

Figure 5.1: Design of ECRT: Voting Mechanism

Cache management divides the cache into static
partitions and lets a few successful policy works in
separate partitions. CacheManager make predictions on
whether objects should be cached or replaced. A Voting
of these predictions defines the master policy that
manages the real cache. We have two separate Policy
Pools (PP), PP1 and PP2. Each pool has the same set of
policies all with equal cache sizes which are also equal to
the physical cache size.

The first sets of policies, those in PP1, are only used for
voting purposes. All policies in PP1 directly observe the
request stream and may choose to keep metadata for
different objects.

The second sets of policies, those in PP2, are used to
cooperatively act as the master policy that governs the
physical cache space. The policies in this pool only keep
metadata for those objects in the physical cache, but are
allowed to order their metadata independently. Since all
policies in PP2 were assumed to have the same cache
size, the set of objects cached at this period will also be
exactly the same. Whenever the physical cache is full,
some objects need to be replaced from the physical cache
to make room for the incoming ones. We replace from the
physical cache by the rule of this policy.. Successful
policies have larger votes and are thus more likely to be
selected as the policy that will govern the physical cache
at any given instant. The selected policy indicates which

object or objects should be ejected and then all the other
policies in PP2 obey its choice releasing the record of the
selected objects from their queues.

1. Physical cache = Physical memory where real
data for objects is stored

2. Policy pool (PP) = a policy that gives an
ordering of objects by using only the headers of
objects

3. PP1 (Policy Pool 1) = the set of Policies where
each Policy orders objects seen in the request
stream

4. PP2 (Policy Pool 2) = the set of Policies where
each Policy orders objects kept in the physical
cache

5.3. Proposed Algorithm:

1. Initialize Counter for different policies.

2. repeat following steps.

3. while (page replacement required)

4. apply voting mechanism.

5. find vote.

6. if(vote=majority)

7. {

8. replaced that suggested page.

9. update counter of majority.

10. }

11. else if(page replaced)

12. exit

13. else

14. check History.

15. select page with maximum counter value and
replaced that page or if counter is same
randomly select page for replacement.

16. update counter value of that policy.

17. exit.

5.4. Mobile System Performance Criteria:

To study the effects of the chosen techniques on the
mobile application, we must first decide how to measure
the effect of each technique and the performance of the
application. We consider the following criteria: user
perceived latency, request meet rate, cache hit rate, and
wireless bandwidth efficiency.

 User perceived latency (UPL): time interval
between the client sending a request until
receiving the required object – measures how
fast a user’s request is met, the shorter the
better.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3175

 Request meet rate (RMR): ratio of the number of
object displayed to the number of total requests
– measures how many user requests are met, the
bigger the better.

RMR = (objectsdisplayed / totalrequests)

 Cache-hit-rate (CHR): ratio of the number of
requests met in cache to the number of total
requests – measures how efficient the caching
and prefetching algorithms are, the bigger, the
better.

 CHR= (cachehits / totalrequests)
 Bandwidth efficiency (BE): ratio of the number

of object units used to the total number of object
units fetched from server - measures how
efficiently the wireless bandwidth is used, the
bigger the better.

 BE=(objectsdisplayed / objectstransmitted)

6. EXPERIMENT RESULT

6.1. Client memory space, object segment size
and object cache size :

Client program memory space is 220 Kbytes. The
program takes about 50 kbytes. Within this restriction,
how to set the object segment size has a fundamental
effect on the experiments. Initially, we set the object
segment size to be the full screen size that is 160*150
pixels (excluding the buttons panel). But the memory can
hold at most two object segments of full color and of size
160*150 pixels, the user perceived latency of such a
object segments is about 5 minutes and most of the time
the user will not see the required object because he has
moved out of the current object boundary before the
object segment is retrieved. And hence there is no way to
test any prefetching and caching schemes.

6.2. Transmission Bandwidth between Client
and Server

We estimate the transmission bandwidth between client
and server by transmitting a certain amount of data from
the server to the client and recording the transmission
time.

Figure 6:1 J2ME Wireless Toolkit and MIDP

Table 6.1: Execution Time and Frequency use of the
method root.

Table 6.2: Execution Time and Frequency use of the
method java.util.timer.run.

Table 6.3: Execution Time and Frequency use of the
method java.util.TimerThread.mainLoop.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3176

Figure6.4: Memory Monitor Graph

Stage Current
Memory

Maximum
Memory

No. Of
Objects

Start up 12248 12356 263
Event
Processing

11844 13008 188

Char S 12516 13008 296
Char A 12412 13008 292
Char N 12464 13008 294
Char J 12412 13008 292
Char A 12412 13008 292
Char Y 12516 13008 296
Save 12496 13008 293

Table 6.4: Memory Usage at different stages

Text: SANJAY

Stage Current
Memory

Maximum
Memory

No. Of
Objects

Start up 9548 9656 197
Event
Processing

10248 12024 226

Char S 9816 12024 230
Char A 9712 12024 226
Char N 9764 12024 228
Char J 9712 12024 226
Char A 9712 12024 226
Char Y 9816 12024 230
Save 9796 12024 227
Exit 9576 12024 221

Table 6.5: Memory usage at without caching scheme.

Stage Current

Memory
Maximum
Memory

No. Of
Objects

Start up 9968 10076 208
Event
Processing

10116 11892 235

Char S 10304 11892 243
Char A 10148 11892 243
Char N 10200 11892 237
Char J 10148 11892 237

Char A 10148 11892 237
Char Y 10252 11892 241
Save 10232 11892 238
Exit 10564 11892 234

Table 6.6: Memory usage at caching scheme

Stage Current

Memory
Maximum
Memory

No. Of
Objects

Start up 9960 10068 208
Event
Processing

9556 11332 233

Char S 10328 11332 244
Char A 10140 11332 237
Char N 10192 11332 239
Char J 10140 11332 237
Char A 10140 11332 237
Char Y 10244 11332 241
Save 10224 11332 238
Exit 10556 11332 234

Table 6.7: Memory usage at voting scheme

Table 6.8: Memory usage of Virtual Memory internal
class.

Table 6.9: Memory usage of int[] class.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3177

7. CONCLUSION

It is generally true that cache replacement scheme and
prefetching schemes and integrated them in the mobile
application. It was found that the caching only approach
gives a better solution in both user satisfaction and
wireless bandwidth utilization. This is based on the fact
that the user trace file we are using is in a random
roaming pattern. It is expected that the experimental
results will be closely related to trace file pattern and
features.

 Different- criteria policies are more successful than
single- criteria policy at deciding which objects to cache.

REFERENCES

[1] M. Vahabi, M. F. A. Rasid et al., “Adaptive Data
Collection Algorithm for Wireless Sensor
Networks”, International Journal of Computer
Science and Network Security, VOL.8 No.6, June
2008.

[2] et al. Vijay S. Kale and Rohit D. Kulkarni, “An
Overview on Wireless Sensor Networks
Technology and Simulation Software’s”,
International Journal of Advanced Research in
Computer and Communication Engineering Vol.
5, Issue 5, May 2016.

[3] et al. Samuel Madauda and Paluku Kazimoto,
“Analysis Of Concepts Of Wireless Sensor
Networks”, July 2014, Vol. 5, No.3 ISSN 2305-
1493, International Journal of Scientific
Knowledge Computing and Information
Technology, Vol. 5, No.3, July 2014.

[4] I.Ari. Amer, E.Miller, S.Brandt, and D.Long. Who
is more adaptive? ACME: Adaptive caching using
multiple experts, In workshop on Distributed
Data and Structures(WDAS 2002), Paris France,
Mar, 2002

[5] Robert B. Gramacy, Manfred K. Warmuth,
I.Ari.Adaptive caching by refetching

[6] W. Dargie and C. Poellabauer, Fundamentals of
wireless sensor networks: theory and practice.
Wiley. com, 2010.

[7] G. J. Pottie and W. J. Kaiser, “Wireless integrated
network sensors,” Communications of the ACM,
vol. 43, no. 5, pp. 51–58, 2000

[8] G. Asada, A. Burstein, D. Chang, M. Dong, M.
Fielding, E. Kruglick, J. Ho, F. Lin, T. Lin, H. Marcy,
et al., “Low power wireless communication and
signal processing circuits for distributed
microsensors,” in Circuits and Systems, 1997.

ISCAS’97., Proceedings of 1997 IEEE
International Symposium on, vol. 4, pp. 2817–
2820, IEEE, 1997

[9] J. M. Kahn, R. H. Katz, and K. S. Pister, “Next
century challenges: mobile networking for Smart
Dust,” in Proceedings of the 5th annual
ACM/IEEE international conference on Mobile
computing and networking, pp. 271–278, ACM,
1999.

[10] M.Satyanarayan, “Mobile Computing”,
IEEE Computer, Vol.26,No.9,Sept.1983,p.81-82.

BIOGRAPHY:

Dr. Sanjay Kumar is working as a
Professor in the Department of
Computing Science and Engineering,
Galgotias University Greater Noida
India. He obtained his Ph.D
(Computer Science and Engineering)
in 2015 under faculty of engineering,
M.M University, Mullana, Ambala,

MTECH (CSE) in 2005 from University School of
Information Technology, GGSIP University Delhi and MIS
(Computer Science and Engineering) in 2002 from
Dr.B.R.Ambedkar University Agra. His research area
includes Biometric Security, Big Data, Data Analytics,
Software Engineering, Wireless Communications, Mobile
Ad hoc & Sensor based Networks and Network Security.

Dr. Sandhya Umrao is working
under the department of
Information Technology in
Galgotia College of Engineering
and Technology Greater Noida
(U.P.) since July 2007. She
obtained her Ph.D (Computer
Science and Engineering) in

2018 under faculty of engineering, M.M University,
Mullana, Ambala, M.Tech. (Computer Science and
Engineering) From Kurukshestra University Kurukshetra
(Haryana) in 2007. She supervised 2 M. Tech students.
Her research area includes Wireless Sensor Networks,
Reliability Theory, Artificial Intelligent and
Cryptography.

