
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 7

Simulation Analysis of a New Startup Algorithm for TCP New Reno

Ahmed Yusuf Tambuwal1, Aminu Bui Muhammed2

1,2 Computer Science Unit, Usmanu Danfodiyo University, Sokoto (UDUS)
---***---
Abstract - Standard TCP (New Reno) is vulnerable to
startup effects that cause loss of connection setup packets or
result in long round trip time (RTT) greater than 1-second.
When either of these events occurs, TCP New Reno resets its
congestion state by reducing initial congestion window (IW)
and slow-start threshold (ssthresh) values to 1 and 2
maximum segment size (MSS) respectively. In this condition,
TCP requires multiple round trips to complete delay-
sensitive transactions, thus resulting in poor user-
experience. This paper presents a new congestion control
algorithm that makes TCP more responsive by increasing its
robustness against startup losses. Our main contribution in
this paper is performing extensive simulation studies to
investigate dynamics of the proposed algorithm. The main
result obtained shows that an average latency gain of 15
RTTs can be achieved at up to 90% link utilisation, with a
packet loss rate (PLR) of 1%.

Key Words: Transmission Control Protocol, Congestion
Control, Startup, Responsiveness, Short-Lived Applications

1. Introduction

The transmission control protocol (TCP) 1 is the main
protocol used on the Internet for reliable delivery of data
packets between communicating hosts. A TCP client
initiates a connection to a remote Internet server using a
three-way handshake (3WHS) procedure. In general, the
client then submits a data request, which is processed by
the server resulting in a data response. Once data
transmission starts, TCP attempts to maximize throughput
without causing congestion on the network. Several works
have focused on designing new TCP algorithms with better
throughput performance such as in 2345.

Conversely, throughput performance is not the main
requirement of short-lived interactive applications (e.g.
web browsing and E-commerce), which account for a
majority of TCP flows 67. Quite different from bulk
transfers, interactive applications demand speedy delivery
of few data chunks across the Internet within short delay
bounds. Despite many algorithms proposed to solve this
important problem 89101112, it still remains an open
challenge for TCP.

This paper proposes a new algorithm that aims to make
standard TCP (New Reno) more responsive by increasing
its robustness against startup losses. TCP New Reno
interprets the loss of connection setup packets (i.e. SYN or
SYN-ACK) as a signal for serious network congestion,
prompting a sender to reduce its initial congestion
window (IW) to 1 maximum segment size (MSS) and its
slow-start threshold (ssthresh) to 2 MSS 13. This response
increases latency of short-lived interactive applications by

several round trips, thus significantly reducing end-user
Internet experience.

While ignoring the SYN congestion signal and starting with
very large IW and ssthresh values negates TCP
conservative principles, there are strong motives to use a
less conservative approach. Firstly, random packet loss is
quite a common occurrence when data traverses
wireless/mobile network links e.g. due to high contention
between multiple users sharing the radio channel, poor
weather conditions, or when a mobile host is obstructed
and suffers temporary link outages 1415. Also, network
middle boxes such as firewalls, proxies, and network
address translators, can erroneously drop SYN packets
due to suspicion of unwanted or malicious traffic 1617. In
a more general context, TCP inherently causes loss of
packets (including the SYN and SYN-ACK) when probing
for available capacity and trying to maximize throughput
181920.

This paper investigates performance of a newly proposed
algorithm called ‘TCP SYN Loss (TSL) Startup Algorithm’
that uses a halving congestion response function during
startup, which is less conservative than the current
standard. After connection setup is completed, standard
TCP congestion control is applied for the data transfer
phase. Our proposed algorithm uses the following set of
instructions.

 () *

 (

)

 (

)

+

The rest of this paper is organized as follows: Section 2
presents the simulation setup that we use for the study.
Section 3 then presents and discusses extensive
simulation results before the paper concludes with a
summary in section 4.

2. Simulation Setup

In order to investigate dynamics of the proposed algorithm,
sets of simulations are performed with realistic models
that represent Internet connections at different congestion
levels. The network topology, application traffic, and
transport model are discussed below.

2.1 Network Topology

An institution network normally has enough
bandwidth to carry its own traffic. Similarly, the Internet

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 8

backbone is generally highly provisioned, though
sometimes it can get congested 22. Conversely, the access
link from an institution network to the Internet gateway is
usually shared among multiple networks, and can
reasonably be assumed to be the main bottleneck for
wide-area Internet connections. Therefore simulations in
this paper are performed using the single bottleneck,
dumbbell topology illustrated in Figure 1.

Fig. 1 Single Bottleneck Dumbbell Simulation Topology

The available bandwidth at the end links is set high (i.e.
1Gbps), which causes the 10Mbps Internet service
provider (ISP) access link between the routers to be the
bottleneck. The main direction of traffic flow is from the
left side where HTTP servers are connected to the Internet
router, while the traffic destinations are connected to the
access router on the right side.

2.2 Traffic Model

The Packmime-HTTP traffic generator 23 is used to
simulate TCP-level traffic generated on an Internet link
that is shared by many web clients and servers. The most
important parameter is the rate parameter, which controls
traffic intensity i.e. average number of new HTTP
connections started each second. The distribution of
Packmime-HTTP web object request and response sizes
are plotted below. Comparing the web object size
distributions of Packmime-HTTP model to a recent
measurement by Google, the statistics are closely matched.
In fact the average size of web pages has increased over
the years because the number of objects contained in each
page have increased rather than the object sizes.

Fig. 2. CDF of Packmime-HTTP Request and Response
Sizes

Each new HTTP connection has a random request and
response size, and number of objects associated to it.
Three TCP traffic types are differentiated based on size of
the client request and server response: short-lived web
requests, medium-sized web download, and long-lived
FTP traffic.

 Short-lived web requests, in which the total volume of
data is not significantly greater than a few times the
IW. Examples include small object requests, DNS
lookups.

 Medium-sized web downloads, when the flow
transfers a volume of data that takes many RTTs to
complete (e.g. with a volume less than ten times the
total capacity of the network path). Such flows do not
achieve steady-state throughput predicted by TCP
throughput equation. Examples include web-
download, and email.

 Long-lived FTP traffic, in which the total volume of
data is greater than the network capacity and where
the flow achieves a steady-state throughput with a
maximum value that may be predicted by the TCP
throughput equation. Examples include large file
downloads, video streaming etc.

In each simulation, the HTTP client-server pairs generate
required traffic level using the formula below.

 ()

 ()

 ()

2.3 DelayBox

DelayBox 24 is an NS-2 equivalent to dummynet, often
used in network test beds to delay and drop packets. The
delay box models the propagation and queuing delay
incurred from the clients to server destinations.

Since all HTTP connections in Packmime-HTTP take
place between only two NS-2 nodes, there must be an ns
object to delay packets in each flow, rather than just
having a static delay on the link between the two nodes.
DelayBox also models bottleneck links and packet loss on
an individual connection basis.

Fig. 3. CDF of HTTP Connection RTT Values

Bottleneck Link

• 10Mbps

• 4ms RTT

• Buffer Size=40ms

HTTP Servers

Internet Router Access Router

End Links

1Gbps

HTTP Clients

HTTP Connections with

Variable RTT’s

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000

C
D

F

Size in Bytes

Object Request Sizes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1500 4500 15000 30000

C
D

F

Size in Bytes

Object Response Sizes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 500 2000

C
D

F

RTT (ms)

Connection RTT Values

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 9

2.4 Transport Protocol

TCP New Reno is the transport protocol used for all
End-hosts with Selective Acknowledgement (SACK) 25
enabled. However both Explicit Congestion Notification
(ECN) and the Nagle algorithm 26 were disabled. Other
TCP parameter settings are listed in Table 1.

The TCP latency is calculated as the average response
time of individual web object requests. NS2 code was
changed to enable TSL startup algorithm i.e. choosing
different values of IW and ssthresh upon SYN-ACK loss
during the 3WHS.

Table 1: TCP Simulation Parameters

Parameters Value

TCP Version New Reno

Maximum Segment Size (MSS) 1460 Bytes

Initial Congestion Window (IW) 3 MSS

Initial Retransmission Timeout (RTO) 1 Second

Maximum Receive Window 1000 Packets

Segments Per ACK 1

SACK Turned ON

Nagle Algorithm Turned OFF

ECN Turned OFF

TSL Startup Turned ON

IW after SYN Loss 1 / 3

SSThresh after SYN Loss 2 / 16 / 1000

2.5 Description of Simulation Graphs

With the aim to evaluate performance of the different
TSL variants, TCP implementation in ns2 has been
modified to include an option that implements the TSL
startup algorithm. This chapter performs sets of
simulations that compare TCP to five TSL variants at
different levels of congestion.

The following notations are used to represent TCP and
TSL variants.

 TSL 1, 2 – IW = 1 and ssthresh = 2 after SYN-ACK loss
 TSL 1, 16 - IW = 1 and ssthresh = 16 after SYN-ACK loss
 TSL 1, 1000 - IW = 1 and ssthresh = 1000 after SYN-ACK

loss
 TSL 3, 2 - IW = 3 and ssthresh = 2 after SYN-ACK loss
 TSL 3, 16 - IW = 3 and ssthresh = 16 after SYN-ACK loss
 TSL 3, 1000 - IW = 3 and ssthresh = 1000 after SYN-ACK

loss

3. Simulation Results

Each set of simulations is run with a constant average
traffic load that fluctuates stochastically over time

depending on application and transport protocol
behaviour. A simulation run is terminated after a total of
750,000 HTTP client-server connection pairs have been
completed. This allows the sample metrics to reach a
reasonable stable value with very low sampling errors.
Also a warm up interval of 60 seconds is applied at the
beginning of each simulation to disregard startup effects.

The main results show impact of TSL startup on web
transfers with cases of lost SYN-ACK segments. The impact
of the transport protocol on network performance is also
monitored based on packet loss rates and bottleneck link
utilisation.

3.1 Response Times of Web Connections with SYN-
ACK Loss

In the first simulation, the response times of web
connections that experience SYN-ACK loss are plotted and
compared for the different startup algorithms. The
response times are measured in units of RTT so that all the
connections with different RTTs are normalized and
presented in a uniform scale. The response times plotted
do not include the 1-second initial RTO delay before the
SYN-ACK is retransmitted. Hence the fastest response time
is 2 RTTs, including the 3WHS.

Fig. 4. Response Time (in RTT) of short web connections
with SYN-ACK loss at 40% congestion

The graph on the left in Figure 4 plots response times
for object sizes between 1KB and 50KB. This results in a
scatter plot with a stepwise function. The steps represent
boundaries, which separate connections that can be
completed in a minimum number of RTTs if no further
losses occur after SYN-ACK retransmission. As can be seen
in the graph, many connections deviate from the center
where the best-fitting line would pass. The frequency and
level of deviation largely depends on the startup algorithm
employed.

The graph on the right in Figure 4 shows the
corresponding complementary cumulative distribution

 2

 5

 10

 50

 100

 200

 500

 1 8 20 50

R
e
s
p

o
n

s
e

T

i
m

e

(
R

o
u

n
d

T

r
i
p

s
)

Web Object Size (KB)

Latency of All Web Connections with SYN-ACK Loss

SYN Loss Startup Algorithms
TSL 1, 2

TSL 1, 16
TSL 1, 1000

TSL 3, 2
TSL 3, 16

TSL 3, 1000

 0.01

 0.1

 1

 2 5 10 50 100 200

C
o

m
p

l
e
m

e
n

t
a
r
y

C

D
F

Response Time (RTT)

Response Time CCDF Distribution - 40% Link Utilisation

SYN Loss Startup Algorithms
TSL 1, 2

TSL 1, 16
TSL 1, 1000

TSL 3, 2
TSL 3, 16

TSL 3, 1000

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 10

(CCDF). The response times of the top 10% of connections
is similar because these connections sizes are less than 1
maximum segment size (1460 Bytes). Hence these
connections are not affected by any congestion action
apart from the 1-second SYN-ACK RTO delay.

As expected, the brute-start variants result in fastest
response times for majority of web object downloads, up
to the 70th percentile. This is because brute-start variants
can transfer up to 4.5KB in 2 RTTs if no further loss
occurs. Furthermore, due to higher number of segments in
flight, the brute-start variants are more robust to early
packet losses (e.g. for the first and second RTT) as they can
take advantage of limited transmit 27 and fast recovery
algorithms.

TSL 3,2 and TSL 3,1000 startup variants become
progressively slower than TSL 3,16 as object size
increases. This is due to slower acceleration and higher
induced congestion respectively. Similarly, TSL 1,16 and
TSL 1,1000 variants become progressively faster than TCP
(TSL 1,2) as object size increases. Between the gentle-start
variants, TSL 1,1000 has slightly higher tail latencies
compared to TCP.

3.2 Response Times of High RTT Connections

In this section, response times of high-RTT connections
are specifically examined. The RTT represents how much
time it takes, regardless of object size, for a single
transaction between the client and server. This means
high-RTT connections are particularly affected by multiple
numbers of round trips. For example, 20 RTTs results in a
1 second delay for a 50ms connection, but a 500ms
connection perceives a 10 seconds waiting delay. Almost
50% of end-to-end connections have an RTT less than
50ms. Hence for the purpose of this study, high-RTT
connections are selected as those having an RTT that is
greater than 50ms.

Fig. 5. Response Time (in seconds) of high-RTT
connections with SYN-ACK loss at 40% congestion

The CCDF graph in Figure 5 shows that TSL startup
reduces average response time by approximately 500ms
at the 10th percentile, and by up to 3 seconds for the
bottom 1% of high-RTT connections with SYN-ACK loss.
Apart from measuring average performance, it is also
important to consider individual HTTP flows to ensure
latency fairness, which is assessed using the correlation of
response times for web flows. The spread of responses in
Figure 5 shows higher occurrences of extreme response
times (above 10 seconds) when TCP is used compared to
all the TSL startup variants. This proves that using TSL
startup improves fairness for web flows, as the response
times of individual connections are more closely
correlated.

Another interesting phenomenon that is observed in
left graph of Figure 5 occurs for connections with RTT
greater than 1 second. Due to the initial RTO value of 1
second, these connections are assumed to have lost the
SYN-ACK packet after 1 second, causing spurious SYN-ACK
retransmission. However when the response to the initial
SYN-ACK eventually arrives, the connection proceeds and
finishes faster than connections with SYN-ACK drops.

3.3 Response Time Distribution at High
Congestion

This section measures latency performance at very
high congestion levels of 90% and 98% link utilisation as a
worst-case scenario. High congestion may occur
infrequently on a network link due to flash crowds of
HTTP flows or due to initiation of simultaneous bulk
transfers.

At 90% link utilisation, all TSL startup variants
continue to perform better than TCP for web transactions.
However the overall web performance is considerably
worse. For example, average TSL response time is
increased from 20 to 50 RTTs at the top 10th percentile,
and from 100 to 400 RTTs for the top 1 percentile.
Similarly, average TCP response time is increased from 30
to 60 RTTs at the top 10th percentile, and from 180 to 600
RTTs for the top 1% of connections.

Also at 90% congestion level, starting with large IW of
3 segments causes collateral damage for self and other
HTTP flows. This is shown on the left graph of Figure 6
where the latency performance of brute-start variants for
small web objects is similar or worse than other TSL
variants, unlike the situation at 40% congestion.

At 98% link utilisation, a number of TSL startup
variants result in too high PLR, which ultimately results in
worse average latency performance than TCP. In
particular, keeping the ssthresh value at an infinitely high
value does not benefit short web flows as TSL 1,1000 and
TSL 3,1000 variants have highest web response time.
Conversely, TSL 3,16 variant has the overall best
performance across all the different congestion levels
considered as it allows most object downloads to be

 0.2

 1

 2

 5

 10

 20

 50

 100

 50 100 200 500 1000 2000 6000

R
e
s
p

o
n
s
e

T

i
m

e

(
S

e
c
o
n

d
s
)

Connection RTT (ms)

Latency of High RTT Connections with SYN-ACK Loss

SYN Loss Startup Algorithms
TSL 1, 2

TSL 1, 16
TSL 1, 1000

TSL 3, 2
TSL 3, 16

TSL 3, 1000

 0.01

 0.1

 1

 0.1 0.5 1 2 5 10

C
o

m
p

l
e
m

e
n

t
a
r
y

C

D
F

Response Time (Seconds)

Response Time CCDF Distribution - 40% Link Utilisation

SYN Loss Startup Algorithms
TSL 1, 2

TSL 1, 16
TSL 1, 1000

TSL 3, 2
TSL 3, 16

TSL 3, 1000

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 11

completed in one or few RTTs, and also accelerates with
an appropriate speed to complete larger object downloads
quickly, without causing too high congestion.

Fig. 6 Response Time (in RTT) at very high congestion

3.4 Average Response Times at Different
Congestion Levels

Figure 7 shows a summary of average web response
times at different congestion levels.

Fig. 7. Average response times (in RTT) of all connections
with SYN-ACK loss

 At low-to-moderate congestion (0-40% link utilisation
level), TSL startup helps to reduce average web
response time by 1-5 RTTs.

 At moderate-to-high congestion (40-90% link
utilisation level), TSL startup becomes more critical
for protecting web flows from early congestion action.
It reduces average web response time by 13 RTTs.

 At very high congestion (greater than 90%), TSL
startup worsens web performance, increasing the
average response time by up to 70% for the worst
case.

Based on results obtained, some preliminary conclusions
can be made:

 TSL startup benefits web flows for faster completion
time in most cases.

 Starting with a larger IW after SYN-ACK loss is very
useful because it allows up to 75% of web objects to
be downloaded in a single round trip assuming no
further losses occur.

 If TSL startup is used, a mechanism that provides
feedback is beneficial to interrupt its use over a short-
term basis while there is very high congestion.

3.5 Average Packet Loss Rate

This section reports average PLR of bottleneck link at
40%, 90%, and 98% link utilisation levels when using TCP
and TSL startup variants respectively.

Fig. 8. Average packet loss rates measured with 95%
confidence intervals

TABLE 2. Percentage Increase in Average PLR at Different
Congestion Levels

Congestion
Level

Increase in Average PLR due to TSL Startup
(%)

TSL 1,
16

TSL 1,
1000

TSL 3,
2

TSL 3,
16

TSL 3,
1000

40% 0.268 0.93 0.038 0.42 2.329

90% 0.86 1.18 2.32 3.13 3.49

98% 5.74 6.66 6.43 6.745 7.093

 0.01

 0.1

 1

 2 5 10 50 100 200 500 1000

C
o

m
p

l
e
m

e
n

t
a
r
y

C

D
F

Response Time (RTT)

Response Time CCDF Distribution - 90% Link Utilisation

SYN Loss Startup Algorithms
TSL 1, 2

TSL 1, 16
TSL 1, 1000

TSL 3, 2
TSL 3, 16

TSL 3, 1000

 0.01

 0.1

 1

 2 5 10 50 100 200 500 1000 2000

C
o

m
p

l
e
m

e
n

t
a
r
y

C

D
F

Response Time (RTT)

Response Time CCDF Distribution - 98% Link Utilisation

SYN Loss Startup Algorithms
TSL 1, 2

TSL 1, 16
TSL 1, 1000

TSL 3, 2
TSL 3, 16

TSL 3, 1000

 0

 20

 40

 60

 80

 100

 120

 140

40 90 98

N
u

m
b
e
r

o
f

R
T

T
s

Link Utilisation Level (%)

Ave. Latencies for Web Connections with SYN-ACK Loss

SYN Loss Startup Algorithms
TSL 1, 2

TSL 1, 16
TSL 1, 1000

TSL 3, 2
TSL 3, 16

TSL 3, 1000 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

TSL 1,2 TSL 1,16 TSL 1,1000 TSL 3,2 TSL 3,16 TSL 3,1000

P
a
c
k

e
t

L
o

s
s
 R

a
te

 (
%

)

Startup Algorithm

Average Link Loss Rate at 40% Offered Load

 4.6

 4.7

 4.8

 4.9

 5

 5.1

 5.2

 5.3

 5.4

TSL 1,2 TSL 1,16 TSL 1,1000 TSL 3,2 TSL 3,16 TSL 3,1000

P
a
c
k

e
t

L
o

s
s
 R

a
te

 (
%

)

Startup Algorithm

Average Link Loss Rate at 90% Offered Load

 9.6

 9.8

 10

 10.2

 10.4

 10.6

 10.8

 11

TSL 1,2 TSL 1,16 TSL 1,1000 TSL 3,2 TSL 3,16 TSL 3,1000

P
a
c
k

e
t

L
o

s
s
 R

a
te

 (
%

)

Startup Algorithm

Average Link Loss Rate at 98% Offered Load

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

40 90 98

P
L

R
 (

%
)

Link Utilisation Level (%)

Average Loss Rate at Different Congestion levels

SYN Loss Startup Algorithms
TSL 1, 2

TSL 1, 16
TSL 1, 1000

TSL 3, 2
TSL 3, 16

TSL 3, 1000

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 12

Based on accumulated results summarized in Table 2, a
number of conclusions can be drawn:

 The level of performance degradation due to TSL
startup depends on link congestion level. At 40%
congestion level, TSL startup does not significantly
increase the average PLR. However as congestion level
increases, TSL startup becomes more harmful, with a
higher rate of increase of average PLR.

 At low-to-moderate congestion levels, keeping the
ssthresh infinitely high causes higher PLR compared
to keeping IW high. This can be explained by the fact
that the congestion window grows too quickly,
causing larger instantaneous buffer queues that are
more susceptible to packet drops when a sudden
traffic burst occurs.

 At high congestion levels, collapsing the IW to 1 helps
to keep the average PLR relatively low compared to
when IW is kept high. This is because starting with an
IW of 3 segments increases probability of causing
packet losses at the already congested buffer queues.

 When congestion is very high, it is very important to
be conservative and reduce both IW and ssthresh to
lowest possible values as practiced by standard TCP.

3.6 Instantaneous Packet Loss Rate

Figure 9 compares instantaneous PLR measured at 1-
second intervals for TCP and TSL 3,16 variant. The left
graph shows that at 40% link utilisation, the loss
behaviour is quite similar, with both algorithms
experiencing occasional spikes in PLR above 10%. At 90%
link utilisation (right graph), TSL 3,16 causes higher
instantaneous PLR with a peak value of 26% compared to
19% for TCP.

Fig. 9. Instantaneous packet loss rates measured at 1-
second intervals

Figure 10 plots CCDF of instantaneous PLR for
different congestion levels. The average PLR only
measures the average number of packets dropped during
an arbitrary long period of time. This cannot adequately
reflect packet loss of individual flows during a small
period of time when the PLR fluctuates severely due to
congestion. Related to this problem is a basic question of
how correlated are the losses. This is better represented
by the instantaneous PLR graphs plotted below.

Fig. 10. CCDF of instantaneous packet loss rates at
different levels of congestion

For example a short web flow may suffer multiple
losses at startup because a bulk FTP connection is
occupying the router’s entire buffer. Conversely, an FTP
may suffer losses because a new flow starts too
aggressively, exceeding the available capacity at the
bottleneck buffer.

3.7 Average Link Throughput

Overall, there is only a small impact on average
throughput as a result of using TSL startup algorithms.
The highest throughput drop is 1.484%, which occurs at
98% link utilisation and using the most aggressive TSL
variant. However, in most cases there is always a small
decrement in throughput, which is a direct consequence of
higher PLR. This result indicates a slight throughput
tradeoff for lower web latency.

TABLE 3. Percentage Loss in Average Throughput at
Different Congestion Levels

Congestion
Level

Decrease in Average Throughput due to TSL
Startup (%)

TSL
1, 16

TSL 1,
1000

TSL 3,
2

TSL 3,
16

TSL 3,
1000

40% 0 0 0.011 0.027 0.026

90% 0 0.15 1.03 0.988 0.907

98% 0 1.02 1.08 1.33 1.484

 0

 2

 4

 6

 8

 10

 12

 14

 16

15mins 30mins 45mins 1hr

P
L

R
 (

%
)

Simulation Time

Instantaneous PLR measured at 1s Intervals (40% Ave. Link Utilisation)

SYN Loss Algorithm
TCP Startup

TSL 3,16 Startup

 0

 5

 10

 15

 20

 25

 30

15mins 30mins 45mins 1hr

P
L

R
 (

%
)

Simulation Time

Instantaneous PLR measured at 1s Intervals (90% Ave. Link Utilisation)

SYN Loss Algorithm
TCP Startup

TSL 3,16 Startup

 0.01

 0.1

 1

 0.01 0.1 0.5 1 2 5 10 20 30

C
o

m
p
le

m
en

ta
ry

 C
D

F

PLR (%)

PLR CCDF Distribution

Startup Algorithm (Congestion Level)
TSL 1, 2 (40%)
TSL 1,2 (90%)
TSL 1,2 (98%)

TSL 3, 16 (40%)
TSL 3,16 (90%)
TSL 3,16 (98%)

 3.4

 3.45

 3.5

 3.55

 3.6

 3.65

 3.7

 3.75

 3.8

TCP 1,2 TSL 1,16 TSL 1,1000 TSL 3,2 TSL 3,16 TSL 3,1000

T
h
r
o
u
g

h
p

u
t

(
M

b
p
s
)

Startup Algorithm

Average Throughput at 40% Offered Load

 8.2

 8.3

 8.4

 8.5

 8.6

 8.7

 8.8

TCP 1,2 TSL 1,16 TSL 1,1000 TSL 3,2 TSL 3,16 TSL 3,1000

T
h
r
o
u
g

h
p

u
t

(
M

b
p
s
)

Startup Algorithm

Average Throughput at 90% Offered Load

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 13

Fig. 11. Average link throughput measured with 95%
confidence intervals

3.8 TCP Fairness Measure

New congestion control mechanisms are required to
interact fairly with TCP. In most cases TCP fairness is
estimated based on the bandwidth share (throughput) of
the new protocol compared to TCP e.g. using Jains fairness
index or Max-min fairness method. However when the
metric of interest is latency, the conventional methods are
not appropriate.

Fig. 12. Heterogeneous Traffic Mix with Different Flows
using TCP and TSL Startup

For this simulation, the latency fairness is measured as
the relative increment in response time of short TCP flows
when there is an increase in volume of TSL flows in a
heterogeneous traffic scenario. A number of simulations
are performed with a varying traffic mix of HTTP flows
that use TCP and TSL startup respectively. For each
simulation the average traffic level is kept constant at 40%
link utilisation.

Figure 12 shows that as the percentage of TSL flows
increases (left to right), average response time of both TSL
and TCP flows is reduced accordingly. This means that
when a number of Internet hosts implement TSL startup
algorithm, performance of older TCP versions is not
negatively affected but rather they also benefit from faster
web response time.

4. CONCLUSION

In principle, TCP should be able to operate seamlessly
over a wide spectrum of communication systems ranging
from fast hard-wired connections to slow wireless
connections. In reality, many standard TCP mechanisms
are not well suited for lossy and long-delay Internet paths,
creating possibility of degraded performance in specific
scenarios. This paper presented TSL startup algorithm,
which decouples TCP congestion control used during the
startup phase from the data transfer phase. By using a
gentler loss response function, the TSL startup algorithm
improves TCP robustness against non-congestion related
packet losses that occur due to various startup effects. The
key results are summarized below.

I. TSL startup reduces web latency for all link types
investigated. Average latency gain of 15 RTTs is
achieved at 90% link utilisation.

II. TSL 3,16 variant has best overall performance due to
three main reasons. The first is related to web object
size distribution, which majorly consists of small
sizes that can fit into 3 segments. Also starting with
3 segments allows the sender to be more robust to
early loss of data packets. Third, when the ssthresh
is infinitely high, there are long-lived flows that take
advantage of TSL startup to grow their cwnd too
quickly, causing collateral damage for other short
flows. Highest individual latency gains occur for
connections with high-RTT.

III. TSL startup reduces web latency at low, moderate
and high congestion levels. However when the link is
almost fully utilized (98%), then there can be no
latency gain due to high number of buffer drops.

IV. There are many cases where increase in PLR at
bottleneck link due to use of TSL startup is
negligible. For example at 40% link utilisation, the
increase in average PLR is less than 1% unless the
most aggressive TSL variant is used (TSL 3,1000).

V. On average, TSL startup does not considerably
increase average PLR for all links investigated. The
only exception is for 98% link utilisation where TSL
startup increases average PLR by up to 7%.

VI. The reduction in web latency is achieved at the
expense of slight reduction in link utilisation and
throughput of long-lived flows. This is a consistent
trend exhibited in all simulations performed and can
be considered a positive consequence as it increases
fairness to short flows.

REFERENCES

1. W. R. Stevens, TCP/IP Illustrated Volume I: The
Protocols, New York: Addison-Wesley, 1994.

 9.2

 9.3

 9.4

 9.5

 9.6

 9.7

 9.8

TCP 1,2 TSL 1,16 TSL 1,1000 TSL 3,2 TSL 3,16 TSL 3,1000

T
h
r
o
u
g

h
p

u
t

(
M

b
p
s
)

Startup Algorithm

Average Throughput at 98% Offered Load

 3

 4

 5

 6

 7

 8

 9

 10

40 90 98

T
h

r
o

u
g

h
p
u

t
(
M

b
p

s
)

Link Utilisation Level (%)

Average Link Throughput at Different Congestion levels

SYN Loss Startup Algorithms
TSL 1, 2

TSL 1, 16
TSL 1, 1000

TSL 3, 2
TSL 3, 16

TSL 3, 1000

 378

 380

 382

 384

 386

 388

 390

 392

 394

 396

525507595

A
v
er

a
g
e

R
es

p
o

n
se

 T
im

e
(m

s)

Volume of TCP Mix (%)

Average Web Response Times with Different Mix of Heterogenous Flows

SYN Loss Algorithm
TCP Startup

TSL 3,16 Startup

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 14

2. A. Baiocchi, A. Castellani, and F. Vacirca, “YeAH-
TCP: Yet another highspeed TCP,” in Proceedings
of PFLDNET, Los Angeles, CA, February 2007.

3. S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-
friendly high-speed TCP variant,” SIGOPS Oper.
Syst. Rev., 42(5), 2008.

4. R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H.
Wassel, M. Ghobadi, A. Vahdat, Y. Wang, D.
Wetherall, and D. Zats, “TIMELY: RTT-based
Congestion Control for the Datacenter,” ACM
SIGCOMM Comp Commun. Review, vol. 45, no. 4,
pp. 537–550, 2015.

5. N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh et
al., “BBR: congestion-based congestion control,”
Commun. ACM, vol. 60, no. 2, pp. 58–66, 2017.

6. P. Borgnat, G. Dewaele, K. Fukuda, P. Abry, and K.
Cho, "Seven Years and One Day: Sketching the
Evolution of Internet Traffic," INFOCOM 2009,
IEEE, Rio de Janeiro, 2009, pp. 711-719.

7. “Scaling in Internet Traffic: A 14 Year and 3 Day
Longitudinal Study with Multiscale Analyses and
Random Projections,” IEEE/ACM Trans. on
Networking, vol. 24 (4), pp. 2152-2165, 2017.

8. N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert,
A. Agarwal, A. Jain, and N. Sutin, “An Argument for
Increasing TCP’s Initial Congestion Window,” ACM
Comput. Commun. Rev., 40, 2010.

9. S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B.
Raghavan. “TCP Fast Open,” In Proc. of the ACM
Int. Conf. on Emerging Networking Experiments
and Technologies (CoNEXT), Dec. 2011.

10. H. Sangtae, R. Injong, “Taming the elephants: New
TCP slow start,” Elsevier Computer Networks, vol.
55 (9), pp. 2092-2110, Jun, 2011.

11. T. Flach et.al, “Reducing web latency: the Virtue of
Gentle Aggression”, in Proc. of ACM SIGCOMM,
(Hong Kong, China), pp. 159-170, 2013.

12. B. Briscoe et.al, “Reducing Internet Latency: A
Survey of Techniques and their merits,” in IEEE
Commun. Surveys & Tutorials, vol. 18 (2), pp.
2149-2196, 2016.

13. M. Allman, V. Paxsons, “TCP Congestion Control,”
IETF RFC 5681, Sep. 2009.

14. L. Angrisani, and M. Vadursi, "Cross-Layer
Measurements for a Comprehensive
Characterization of Wireless Networks in the
Presence of Interference," IEEE Trans. on
Instrumentation and Measurement, vol. 56, (4),
pp.1148-1156, 2007.

15. A. Sheth, S. Nedevschi, R. Patra, S. Surana,
L. Subramanian, and E. Brewer, “Packet Loss
Characterization in WiFi-based Long Distance
Networks,” IEEE INFOCOM, Alaska, USA, 2007.

16. A. Medina, M. Allman, and S. Floyd, “Measuring
Interactions Between Transport Protocols and
Middleboxes,” in Proceedings of the 4th ACM
SIGCOMM conf. on Internet measurement,
Taormina, Sicily, 2004, pp. 336-341.

17. W. Zhaoguang, Z. Qian, Q. Xu, Z. Mao, and M.
Zhang, "An untold story of middleboxes in cellular
networks," ACM SIGCOMM Comp. Commun.
Review, vol. 41, (4), pp. 374-385, 2011.

18. Akamai, “State of the Internet,” [online]. Available:
http://www.akamai.com/html/about/press/rele
ases/2013/press_101613.html (Accessed: 14
October 2013).

19. G. Linden, “Make Data Useful” [online]. Available:
http://sites.google.com/site/glinden/Home/Stanf
ordDataMining.2006-11-28.ppt . Retrieved 20
Mar. 2014.

20. Nokia Siemens Network,

http://br.nsn.com/file/2103/latencywhitepaperp
rintversion White paper. Retreieved 20 Mar.
2014.

21. K. Fall, K. Varadhan, ns Notes and Documentation,
Technical report, the VINT UC Berkley, LBL,
USC/ISI, Xerox PARC, 2003.

22. L. Qiu, Y. Zhang, and S. Keshav, “On individual and
aggregate TCP performance,” Cornell CS Tech.
Rep. TR99-1744, May 1999.

23. J. Cao, C. S. William, G. Yuan, J. Kevin, S. F.
Donelson, and W. Michele, "Stochastic models for
generating synthetic HTTP source traffic." In
INFOCOM 2004. Twenty-third Annual Joint Conf.
of the IEEE Comp. and Commun. Societies, vol. 3,
pp. 1546-1557, 2004.

24. NS2, “Use of DelayBox with Packmime-HTTP,”
[online]. Available:
http://www.isi.edu/nsnam/ns/doc/node560.htm
l (Accessed 17 November 2013).

25. S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky,
“An extension to the selective acknowledgement
(SACK) option for TCP,” RFC 2883, 2000.

26. J. Nagle, “Congestion Control in IP/TCP
Internetworks,” RFC 896, January 1984.

27. M. Allman, H. Balakrishnan, and S. Floyd,
“Enhancing TCP’s Loss recovery Using Limited
Transmit”, IETF RFC 3042, Jan. 2001.

http://www.akamai.com/html/about/press/releases/2013/press_101613.html
http://www.akamai.com/html/about/press/releases/2013/press_101613.html
http://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-28.ppt
http://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-28.ppt
http://br.nsn.com/file/2103/latencywhitepaperprintversion
http://br.nsn.com/file/2103/latencywhitepaperprintversion
http://www.isi.edu/nsnam/ns/doc/node560.html
http://www.isi.edu/nsnam/ns/doc/node560.html

