
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1622

Wireless Home Automation System Using OpenHAB

Noorul Hamitha B1, Manojkumar R2, Jeya Prakash S3, Yogesh D4, Bala Murugan VJ5

1Assistant Professor, Kamaraj College of Engineering & Technology, Madurai, Tamilnadu, India
2, 3, 4, 5UG Scholars, Kamaraj College of Engineering & Technology, Madurai, Tamilnadu, India

---***---

Abstract - The home automation is increasing day by day.
But the products differ from each other in its
implementation and they need different tools for their
control. So an integrated platform is needed to control all
these products and should provide an easy way to make the
things to be integrated into home automation. OpenHAB
serves this purpose. In OpenHAB there are a lot of bindings
available to control the smart devices. In this paper, we
create an automation setup which is connected wirelessly
via the Wi-Fi module ESP8266. The controlling of devices
and automation is done by the OpenHAB and its event bus.
The OpenHAB is an open source, platform independent,
vendor-neutral, integrate with other smart home projects
and several other in-built features which makes it a wise
choice for home automation.

Key Words: OpenHAB, ESP8266, Arduino UNO, HTTP
Binding, Home Automation

1. INTRODUCTION

The development of technologies makes it possible to
introduce automation in every aspect of our life. In that
home automation is an important thing to be considered
because of our lifestyle change. We like to control the
devices from a single place whether it may be within our
home or out of the home in order to ensure safety and for
our comfort too. We have already achieved this by the
invent of new smart devices and home automation system.
But they face a common problem that a product of a
vendor doesn't integrate with another vendor product. For
these things to be controlled we need separate
applications for each kind just like considering an example
of two ACs of two different vendors which need two
different remote controls or different mobile apps of the
vendor. Because their internal working configurations
differ. Also, we can't develop our own smart devices to
work along with other smart devices or other home
automation systems. The smart home automation system
integrates only with certain devices and not all. So we
need a different method to communicate with our devices.
Moreover, we need the assistance of the persons from that
firm to set up these devices.

To overcome this openHAB helps us with a big deal of
facilities. It acts as a common communicative language
among the devices. It makes the communication between
the users and the devices, vendor neutral. If we want to
add our own devices which are not a product of any
vendor to be a part of this home automation, it is also
possible because of openHAB.

OpenHAB (Open Home Automation Bus) is an open source
software that provides a common language to
communicate with different automation systems, devices
and technologies. It provides uniform user interfaces and a
common approach to automation rules regardless of the
number of manufacturers. It can run on any platform
which is capable of running JVM. It is easily extensible to
integrate with new systems and devices. It provides APIs
for being integrated into other systems.

In this paper to demonstrate its usefulness and
automation, we have made a device which consists of two
switches for controlling a light and a fan which is
connected via Wi-Fi and a sensor module to sense the
room conditions based on which the automation rules
come into play.

2. METHODOLOGY

Fig 1: Block Diagram

Fig 1 shows the blocks which we are going to deal with.
The dashed arrows denote the interactions between the
blocks and the complete arrows show the actual or
physical connection (wireless). Before starting, the initial
setup of the devices and openHAB is needed.

2.1 OpenHAB setup

We work in Windows OS. So in the following steps,
Windows file path is used. For the openHAB to run, JVM is
needed. Currently, Java 8 is only supported for OpenHAB
2.2. After installing Java, include the java path in the
system variable JAVA_HOME.

In the downloads pages openHAB website, openHAB
runtime distribution can be found. It is a zip file. We use
OpenHAB 2.2 version. After downloading extract it to the
folder C:\openhab. To start the openHAB, open start.bat
file. For Linux systems, it is start .sh file. Both are placed in
the same openHAB folder. The karaf console will appear.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1623

Fig 2: Karaf Console

Then visit http://localhost:8080 in the browser. Then
install standard package. After few minutes, the
installation will complete. Then click Paper UI. In the
Paper UI, most of the configurations can be done. Click on
Add-ons. In the Add-ons section, many bindings are
available. These bindings provide ways to link Items to
physical devices. Here the word Items denotes capabilities
of an application which is used in user interfaces or
automation logic. Items have States which may receive
commands. Some more terminologies are used in
openHAB. But as of now, these are mostly used here.

2.2 ESP8266

The next important thing which we have used to achieve
wireless communication is ESP8266. It is a low-cost Wi-Fi
module with full TCP/IP stack and microcontroller
capability. There are various versions in which we use
ESP-01 version. This is enough for communicating with
the devices and openHAB. This module is directly
connected to Arduino UNO by which the commands and
data are passed and received for further processing and
controlling. The ESP8266 is made to work in server mode.

For the ESP8266 to function correctly a 3.3V regulated
supply is needed. For which we use a 3.3V voltage
regulator. To ensure the safety, the RX terminal of
ESP8266 is secured by a 3.3V Zener diode from the 5V
signal of Arduino TX pin.

2.3 Device Controller

This is the main part which we have designed to control
the devices and make them be a part of our home
automation system. The devices we use are a light and a
fan. Switching ON and OFF is demonstrated here for these
devices. For this switching purpose, 5V relay is used. The
central controller of this device controller is chosen as
Arduino UNO to which the ESP8266 is also connected.

Arduino is a microcontroller board based on the ATmega
microcontroller. It has digital input/output pins, a USB
connection, a power jack and so. It contains everything
needed to support the microcontroller; simply connect it
to a computer with a USB cable or power it with an AC-to-
DC adapter or battery to get started. It uses C++ style

programming with a large set of libraries and examples.
The program can be load directly from the IDE without the
need for any external programmer. These features make
the Arduino the first choice in embedded system
development. Here we use Arduino UNO. Arduino NANO
can also be used since it resembles most of the UNO
characters and NANO may be preferred because of its size.

Fig 3: Device Controller

The devices are controlled by the device controller in two
modes. One is through openHAB (remote mode) and
another one is manual mode. For the manual mode, two
switches are used for their respective devices. The switch
on press gives a trigger signal instead of continuous circuit
closed connection. This can be compared to a push button
switch or a doorbell switch. At the time of pressing the
connection gets closed and after release, the connection
gets opened. So here we have programmed the Arduino to
respond only after the switch is released. The purpose of
the switch is as follows considering only the light(same
follows for the fan also). If the light is OFF, after the first
press, the light should ON and vice versa. This switching is
made based on the state of the device. Because from the
openHAB also we can change the state of the light. So the
state change should not be affected by these modes of
control. For this reason, the switch is not chosen as normal
ON/OFF switch. To read the state of the switch two digital
pins of Arduino have been used.

As it has already been mentioned, 5V relays are used to
switch ON/OFF the light(fan). Another two digital pins
have been used for the excitation of the relays. The
excitation is given based on the previous state of the
devices.

2.4 Sensor Module

The sensor module gives the room environmental
conditions from the sensors in which these values are
used in automation logic.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1624

Fig 4: Sensor Module

The sensors we have used are PIR(Passive Infra Red)
sensor, LDR (Light Dependent Resistor) and
DHT11(Temperature and Humidity Sensor).

The PIR sensor is an electronic sensor that measures
infrared radiation from objects. The PIR gives HIGH signal
to the Arduino whenever a movement of the object is
detected. The PIR consists of three pins: VCC, GND and
OUT. 5V is given to the VCC, GND is grounded and OUT is
connected to the digital pin of Arduino.

The LDR is a light controlled variable resistor which
changes its resistivity based on the light intensity. The
resistivity decreases with increase in light insensitivity. By
connecting the LDR with 5V in series with a high
resistance (voltage divider circuit connection), the
resistance variance is calculated from the voltage variance
which is measured using Arduino analog pin. For
convenience, the voltage is converted into percent. The
analog pin converts 0 to 5V into 0 to 1023 integer value.

Light intensity (in %) = analog value / 1023 * 100

Using the above formula the light intensity is converted
into percentage.

Next is the temperature and humidity sensor module
(DHT11). It has three pins: VCC, DATA and GND. VCC is
connected to 5V, GND to GND of Arduino and DATA to the
analog pin of Arduino. Using the DHT.h library we can
directly convert the analog value into temperature and
humidity value.

2.5 HTTP Binding

This binding is available in openHAB Add-ons section
which has already been mentioned in the OpenHAB setup
section. In the Add-ons section click the BINDINGS tab.
Install the HTTP Binding. This binging is used to send and
receive the commands and data to the ESP8266 which is
working in server mode. The working is same as that of
visiting a web page in the browser. We request the data
from the ESP8266 by using its IP address. This will be
discussed later in this paper.

2.6 Javascript Transformation

In the Add-ons section, TRANSFORMATION tab can be
found. Install the Javascript Transformation. This is used
to convert the data from the ESP8266 to the required
format in which it should be employed in openHAB.

2.7 Building Sitemap

To manipulate the devices in openHAB, we have to create
items which show the states of the devices and are used in
automation logic. We have used textual configuration to
create items. For the textual configuration, we have to
create a file named filename.items, filename.sitemap and
filename.rules. we have used default as the filename for
items and rules. For sitemap, the file name is based on the
name given to the sitemap configuration. The .items file
contains the items we are going to work. The .sitemap is
for creating a structure of device placement in the home.
This sitemap shows the final controlling page of our home
automation system. The .rules page contains the
automation rules.

It is easy to create the files using Home Builder available in
the openHAB. Go to the Home Builder page in openHAB
and select the home construction as required. We have
chosen the below configurations.

Table 1: Home Builder Configurations

Number of floors 1

Rooms Living Room (Ground Floor)

Objects Light, Fan, Motion Sensor,
Temperature, Humidity, Light
Intensity (created own)

Generate Items, Sitemap

In the right side Items, Sitemap tabs will be available. Click
and copy the code. Paste the Items code in default. items
file and place the file in C:\openhab\conf\items folder.
Similarly, copy the Sitemap code into our_home.sitemap
file and place it in C:\openhab\conf\sitemaps folder. Now
the home setup can be viewed in Basic UI page of
openHAB.

2.8 Communication between ESP8266 and OpenHAB

The ESP8266 will send the message request to the
Arduino in string format. So the data we require can be
retrieved easily from the ESP. The data format is like
below

+IPD,0,117:POST /?Command=11 HTTP/1.1

User-Agent: Jakarta Commons-HttpClient.3.1

Host: 192.168.43.134

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1625

Content-Length: 0

The highlighted part is the data we want. Before going to
what is Command=11 in the above data, it is better to
explain how the command to ON/OFF the devices is made.
The light is given a number and fan is given a number 2.
Further devices will get the numbers in the increasing
order. The state ON is considered as 1 and OFF as 0. So, to
switch ON the light the command 11 is passed, for switch
OFF 10 is passed. Similarly, the fan will have the
commands 21 and 20 for ON and OFF respectively. Now
the Command=11 can be understood as the command to
switch ON the light.

Now this part will explain how to send the HTTP request
to the ESP. First, the ESP should be connected to the same
network as the openHAB is connected. The ESP IP address
can be found by using the command AT+CIPSTA?. Let the
IP address of ESP be 192.168.43.134. Go to default. items
file. Replace the {channel=} in the light item syntax with
the following.

{http=">[ON:POST:http://192.168.43.134/?Command=11
] >[OFF:POST:http://192.168.43/?Command=10"}

The same applies to the fan with the change in command
word. Next for sensor module another ESP with IP address
192.168.43.184 is used. It only sends the data back on
request. The data is in the format

movement-0,temp-55,hum-34,light-55

The value of movement is either 0 or 1 which denotes the
absence or presence of objects. The temp represents
temperature in °C, hum represents humidity in percentage
and light represents light intensity in percentage. This
data is transformed to the equivalent Items states by
javascript.

{http="<[roomWeatherCache:5000:JS(getMovementDetec
tion.js)]"}

Change the {channel=} of motion sensor into the above
code. The roomWeatherCache specifies the cache obtained
from the url mentioned in
C:\openhab\conf\services\http.cfg.

Change #<id1>.url and #<id1>.updateInterval by

roomWeatherCache.url=http://192.168.43.184/

roomWeatherCache.updateInterval=10000

The getMovementDetection.js is the Javascript file which is
used for transformation. The .js file is placed in
C:\openhab\conf\transform\ and having a function inside
for this format

(function(input) {

 ...

 ...

 return itemState

})(input)

Similarly getTemperature.js, getHumidity.js and
getLightIntensity.js are used to get the respective values
from the data string. Cache is used here instead of IP
address to reduce the multiple requests of the ESP server
for the same data. The value between the cache URL and
transformation type is the refresh interval in milliseconds.

2.9 Automation Rules

This is the final part of this work. The automation made
based on the following conditions. The detection of PIR
sensor is considered as ON/OFF since it is considered as a
switch type in openHAB. ON - presence & OFF - absence.
Here the humidity conditions are neglected for making the
rules simple and understandable.

Table 2: Actions when Motion Sensor is ON

Conditions Actions

Light Intensity >= 70 % Light OFF

Light Intensity < 70 % Light ON

Temperature >= 23 °C Fan ON

Temperature < 23 °C Fan OFF

If motion sensor is OFF, Light and Fan both are in OFF
state. To frame the rules create a .rules file in the folder
and place it in C:\openhab\conf\rules\ folder. The rules
syntax is

rule "<RULE_NAME>"

when

 <trigger_condition> [or] <trigger_condition2> [or ...]]

then

 <script_block>

end

The states of the items can be found using the property My
Item. state. To send commands use My Item. Send
Command (command) or My Item. Post Update
(new_update) to change the values without triggering any
actions. The trigger conditions in the when block changes
with type. Here we use the trigger condition received
update and received command as in the example

Item LivingRoom_Motion received command ON or Item
LivingRoom_Motion received update ON

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1626

There is an another facility in openHAB to create rules
using graphical editor. This editor is available in HABmin
page which can be installed from the Paper UI.

2.10 Outcome

The final control can be done through the Basic UI. For
these views go to the Basic UI page. We can create many
sitemaps. Hence these sitemaps are listed at the start of
the page. We here only use one sitemap named Our_home.
After clicking on this sitemap, the page showing the Living
Room and other rooms will appear. The following images
show the items state inside the Living Room group.

Fig 5, 6 and 7 show the change of states of the items based
on the condition discussed earlier. The states get
refreshed at an interval of 5 seconds as we have made in
the configurations.

Fig 5: When Temperature > 23 °C

Fig 6: When Light Intensity < 70 %

Fig 7: When Motion Sensor is in OFF State

The above figures show the state change of the devices
based on our automation rules. These figures screenshots
are taken from the OpenHAB mobile app. It can be viewed
in browsers too by using the IP address of the device
which has openHAB installed.

Apart from these home views, there is an another view in
which it provides both the views and the controls for the
users. The HABPanel gives these features of designing a
home automation more than the Basic UI. Here we can
create dashboards for the control of things. We can group
the devices and items as we like ,which is not like in the
case of Basic UI.

3. CONCLUSION

OpenHAB is a very much useful in designing a home
automation system by ourselves easily. Since it is open
source, it is supported and developed by a large set of
contributors and developers. We can integrate the smart
devices using this integrated platform. A demonstration of
its working is considered here. But it is not easy for a
newbie to do all these things at the beginning. They have
to spend some time in understanding the openHAB. Great
efforts are being put to make the openHAB an easier one.
This results in the Home Builder page which makes the
sitemap creation an easier job. But the rules designing is
not easy. It takes a lot of time to design the rules and
debugging it. A new graphical rule editor has been added
to HABmin page. But it needs more improvement at this
time. Visual Studio Code Editor helps us in many aspects of
designing and testing. The openHAB extension is available
for VS Code.

REFERENCES

[1] https://www.openhab.org

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1627

[2] A. Z. Alkar and U. Buhur, “An Internet Based
Wireless Home Automation System for
Multifunctional Devices”, IEEE Transactions on
Consumer Electronics, Vol. 51, No. 4, NOVEMBER
2005

[3] A. R. Al-Ali and M. AL-Rousan , “Java-Based Home
Automation System”, IEEE Transactions on
Consumer Electronics, Vol. 50, No. 2, MAY 2004

[4] Meensika Sripan, Xuan Xia Lin, Ponchan
Petchlorlean and Mahasak Ketcham, “Research
and Thinking of Smart Home Technology”,
International Conference on Systems and
Electronic Engineering (ICSE 2012) December 18-
19, 2012 Phuket (Thailand)

[5] Dominik Kovac, Jiri Hosek, Pavel Masek, and
Martin Stusek, “Keeping Eyes on your Home:
Open-source Network Monitoring Center for
Mobile Devices”, TSP 2015

