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Abstract – More than six decades after the term 
“Artificial Intelligence” was coined by John McCarthy to 
describe intelligent behavior displayed by machines, finally the 
technology enabled world with automation in every aspect of 
human life is becoming a reality. Artificial intelligence (AI) is 
used to describe the intelligence displayed by machines, which 
defers from the intelligence displayed by humans and other 
animals often referred to as Natural Intelligence (NI). Right 
from the inception of AI, game playing has been an area of 
research. One of the first examples of AI being employed in 
game playing was the computer game of Nim which was 
developed in 1951 and published in 1952. After that AI has 
been used in many computer games like Chess, Tic-tac- toe, 
and Connect-4. The game of Connect-4 was first solved by 
James Dow Allen in 1988. Connect-4 Gaming Portal using 
Adversarial Search (Artificial Intelligence), provides an online 
interface to the zero sum, perfect information strategy game 
of Connect 4. A user will be able to log in to the system where 
he / she can challenge various levels of AI with increasing 
degree of difficulty. The moves of the AI will be optimized by 
using mini-max algorithm and alpha beta pruning. 
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1. INTRODUCTION  

Connect-4 is a two-player game in which the players first 
choose a particular disc color and then take turns to drop 
their respective colored discs from the top into a seven-
column and six-row grid which is vertically suspended. The 
first player to form a horizontal, vertical, or diagonal line of 
four of one's own discs is declared winner of that particular 
game. It is a solved game i.e. a player can always win the 
game by playing the optimal moves. Over the time many 
technologies like data mining, computational intelligence etc. 
have been employed in the game of Connect-4 to make it 
more efficient and interactive [1]. AI has been used in 
computer games right from their beginning. A well-crafted, 
intelligent AI program can make for a challenging—or even 
impossible to beat—competitor [2]. The focus is on the 
traditional use of AI by simulating the general game play of 
the classic board game of Connect-4. Connect-4 is classed to 
the category of adversarial, zero-sum game because in this 
game advantage for a player is disadvantage for its 
opponent. 

Under the context of AI, the concept of adversarial 
search is explored specifically. Here it will examine the 
problems that arise when someone tries to plan ahead in a 

world where other agents are playing against it [1]. The 
games are expressed as multi-agent environments. 

In the online Connect-4 gaming interface a user can 
compete against bots having various levels of difficulty. The 
various degrees of AI that user can play against will be 
primarily of nine types-Random AI (This player is full 
dummy player. It’s propose is just to add randomness in the 
game) and eight AI players utilizing Mini-max algorithm (It 
prioritizes victory the fastest way possible). The 
aforementioned eight players represent the eight levels of 
difficulty, each of which denotes the level of depth to which 
the decision is computed. 

The interface provides user an option to either play 
the game in which game states will be generated using mini-
max algorithm or using mini-max with alpha beta pruning. 
Section 2 discusses about Connect-4 using mini-max 
algorithm, section 3 discusses about Connect-4 using min-
max with alpha beta pruning, section 4 compares the two 
algorithms in terms of computation time taken and number 
of iterations performed, section 5 discusses about heuristic 
function used to calculate the value of the game states. This 
is followed by conclusion and references.    

2. CONNECT-4 USING MINI-MAX ALGORITHM 

In the first option a user plays against the computer in which 
mini-max algorithm is used to generate game states. Mini-
max falls in the category of backtracking algorithm. This 
algorithm has many applications and is used in decision 
making and game theory to find the optimal move for a 
player, assuming that opponent also plays optimally [6]. It is 
widely used in two player games in which players take turns 
to make their move such as Tic-Tac-Toe, Chess, etc. As 
obvious there are two players in mini-max which are called 
maximizer and minimizer. The maximizer aims to get the 
highest score possible while the minimizer does the exact 
opposite and tries to get the lowest score possible. There is a 
value associated with every board state. For a given state if 
the maximizer has upper hand then, the score of the board 
will tend to be some positive value. If the minimizer has the 
upper hand in that board state then it will tend to be some 
negative value. Heuristic function is used to calculate the 
values of the board. This heuristic function is unique for 
every type of game.  
 

Consider the perfect binary tree in Fig-1. It has four 
final states and these four leaves can be reached from the 
root through various paths. The first player to make the 
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move is at the root.  Considering that the maximizing (or 
minimizing) player makes the first move, which means it is 
at root, and opponent at next level. Interesting thing to 
observe here is that which move maximizing (or minimizing) 
player makes considering that opponent also plays 
optimally. 

 
            

 Fig-1: Initial Game Tree in case of Mini-Max 
 
It belongs to the category of backtracking algorithm 
therefore the decision is made by backtracking after trying 
all the possible moves. Initially maximizer has the option to 
go left or right. Assuming it goes left after which it is the 
minimizer’s turn. The minimizer has a choice to make 
between 2 and 4. The aim of minimizer is to minimize its 
value therefore it chooses the least value among both, which 
is equal to 2. Next maximizer goes right after which it is the 
minimizer’s turn. The minimizer has to choose a value 
between 1 and 8. It will definitely choose 1 over 8. Now it is 
maximizer’s turn to choose between 2 and 1. Maximizer’s 
aim is to get the maximum value possible therefore it 
chooses the larger value of the both that is 2. So finally the 
maximizer gets the optimal value of 2 and its best interest 
lies in going left. The game tree used in the example is very 
small and is just used for the purpose of describing the 
concepts clearly and easily but in reality Connect-4 game 
results in a game tree with a large number of game states. To 
find and compute each of the game state is virtually 
impossible. The depth of the tree may be six with a 
branching factor of seven. Therefore a large number of game 
states are computed.  

 

Fig-2: Final Game Tree in case of Mini-max 

There are two possible scores based on the left and right 
moves for the maximizer as can be seen from the above tree. 
The minimizer will never pick the value 8 from the right sub 
tree because it is assumed that the opponent always plays 
optimally. 

There are only two choices for a player in the above example 
but generally, there are many choices. In that case 
maximum/minimum is found out by recurring all the 
possible moves. The scores stored by leaves of the game tree 
for the specified example have been assumed randomly but 
for a typical game, these values are derived [6]. 

In the study carried out it is observed that when 
user plays the game in single player mode and chooses mini-
max as the operating algorithm then AI takes 2799 iterations 
to generate the game state and computation time is 33.00 
milliseconds for a difficulty of depth 4. 

 

3. CONNECT-4 USING ALPHA BETA PRUNING 
 
The technique that can be used to optimize mini-max 
algorithm is the application of alpha-beta pruning. When 
mini-max with alpha beta pruning is used instead of simple 
mini-max algorithm then less number of nodes is evaluated 
in the game tree. Adversarial search algorithm is often used 
in two-player computer games and this algorithm also falls 
under this category [6]. Alpha-Beta pruning is not altogether 
a different algorithm than mini-max; rather it is an optimized 
version of the mini-max algorithm discussed in the previous 
section. It optimizes the mini-max algorithm in various 
aspects like bringing down the computation time by 
performing less iteration than mini-max. In this algorithm 
two extra parameters are passed in the mini-max function, 
namely alpha and beta and that is why it is known as Alpha-
Beta pruning. The introduction of two additional parameters 
make searching much faster and game tree can be searched 
to much more depth. Game tree has many branches leading 
to different game states and benefit of using alpha-beta 
pruning is that if there already exists a better move then 
other branches need not be searched and can be pruned 
saving computation time. At any node in the game tree the 
maximizing player is assured of a maximum score which is 
stored by alpha and similarly the minimizing player is 
assured of a minimum value which is stored by beta. These 
two values namely alpha and beta are updated and 
maintained by the algorithm. Initially both players begin 
with worst possible values they can score and therefore 
alpha is allotted a value of minus infinity and beta is allotted 
a value of plus infinity. It is possible that when a certain 
branch of a certain node is chosen the minimum possible 
score that the minimizing player can get becomes less than 
the maximum score that the maximizing player is assured of 
getting i.e. beta is less than or equal to alpha. In this case, the 
parent node should not choose this node, because it will 
make the score for the parent node worse. Therefore, there 
is no need to explore other branches of that node [7].  

https://cdncontribute.geeksforgeeks.org/wp-content/uploads/minmax.png
https://cdncontribute.geeksforgeeks.org/wp-content/uploads/minmax.png
https://cdncontribute.geeksforgeeks.org/wp-content/uploads/minmax.png
https://cdncontribute.geeksforgeeks.org/wp-content/uploads/minmax.png
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Alpha is the best value that can be guaranteed by maximizer 
at that level or above whereas beta is the best value that can 
be guaranteed by minimizer currently at that level or above. 

 

Fig-3: Initial Game Tree in case of Alpha-Beta Pruning 

The initial condition of the game tree is shown in Fig-3. 
Initially the value of alpha is minus infinity and the value of 
beta is plus infinity. These values are passed down to nodes 
Q and R in the tree. P is the first node to be called. At P the 
aim of maximizer is to choose maximum of Q and R, so Q is 
called first by P but it is not necessary as R can also be called 
first. At Q the aim of minimizer is to choose minimum 
of S and T and hence calls S first. At S, left child which is a leaf 
node returns a value of 2. Now the updated value of alpha 
at S is maximum of minus infinity and 2 which is 2. To decide 
whether it should look at its right node or not, it checks the 
condition beta is less than or equal to alpha. This is condition 
does not hold true since beta is equal to plus infinity and 
alpha is equal to 2. So, the game tree is searched on. S now 
looks at its right child which returns a value of 4. At S, alpha 
is equal to maximum of 2 and 4 which is 4. Therefore, finally 
the value of node S is 4. S returns this value of 4 to its parent 
node Q. At Q, beta is equal to minimum of plus infinity and 4 
which is 4. The minimizer is now guaranteed a value of 4 or 
lesser. Q will now call its right child T to check if it is possible 
to get a value lower than 4. At T the values of alpha and beta 
is not minus infinity and plus infinity but instead minus 
infinity and 4 respectively, because the value of beta was 
changed at Q and that is passed down by Q to T.  
Here T checks its left child which is 5. At T, alpha is equal to 
maximum of minus infinity and 5 which is 5. Here the value 
of beta is 4 and value of alpha is 5 therefore the condition 
beta is less than or equal to alpha holds true. Hence T does 
not need to check for its right child even though it stores a 
larger value than 5. Here right branch of node T is pruned 
and T returns the value of 5 to Q. Here no matter what the 
value of T‘s right child is, it is not explored. Even if the value 
is plus infinity or minus infinity, it still wouldn’t make any 
difference. It is not necessary to even look at it because the 
minimizer is guaranteed a value of 4 or lesser. The basic idea 
behind this logic is that as soon as the maximizing player got 
the value of 5 it knew the minimizing player can get a lesser 
value of 4 on the left side of node Q and if it comes to right 
side of Q it will get a value of 5 or more which in any case in 

greater than 4 and hence will never come to the right side 
and therefore there is no need to waste computation time by 
exploring T’s right child which stores a value of 8. This way 
this algorithm works faster than simple mini-max algorithm. 
Now T returns a value of 5 to Q. At Q, beta is equal to 
minimum of 4 and 5 which is equal to 4. Therefore, node Q 
stores a value of 4. 
 

 
 

Fig-4: Intermediate Game Tree in case of Alpha-Beta 
Pruning 

 

So far this is the condition of game tree. The right branch of 
node T which stores the value of 8 is crossed out because it 
was never computed. Node Q returns the value of 4 to its 
parent node P. At node P, alpha is equal to maximum of 
minus infinity and 4 which is equal to 4. Here the interesting 
thing to note is that the maximizer is guaranteed a value of 4 
or greater. P now calls its right child R to check if it is 
possible to get a value higher than 4. At R, alpha is equal to 4 
and beta is equal to plus infinity. Here R calls its left child U. 
At node U, alpha is equal to 4 and beta is equal to plus 
infinity. Node U looks at its left child which stores the value 
of 0 therefore the updated value of alpha is equal to 
maximum of 4 and 0 which is still 4. Right child of U stores a 
value of 1. Hence the best value this node can achieve is 1 but 
alpha still remains 4. U returns a value of 1 to R. At R, beta is 
equal to minimum of plus infinity and 1. The condition beta 
is less than or equal to alpha becomes false as beta is equal 
to 1 and alpha is equal to 4. So, the further search for deeper 
levels breaks and there is no need to compute the entire sub-
tree of V. The intuition behind pruning of entire sub-tree of V 
is that, at node R the minimizer is assured a value of 1 or 
lesser but before that maximizer was already guaranteed a 
value of 4 if it goes to its left and chooses node Q. So, it does 
not make any sense for maximizer to go to its right and 
choose node R and get a value less than 1. Again, it does not 
matter what values were stored by both children of node V. 
Hence it can be seen how alpha-beta pruning algorithm 
saves a lot of computation time by skipping an entire sub 
tree. Now node R returns a value of 1 to its parent node P. 
Therefore, the best value at P is maximum of 4 and 1 which 
is equal to 4. Hence the optimal value that the maximizer can 
get is 4. The final game tree is shown in Fig-5. The entire sub-
tree V has been crossed out as it was never computed. 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                 Volume: 05 Issue: 04 | Apr-2018                     www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 6.171       |       ISO 9001:2008 Certified Journal       |        Page 1640 
 

 
 

Fig-5: Final Game Tree in case of Alpha-Beta Pruning 

In the study carried out it is observed that when 
user plays the game in single player mode and chooses mini-
max with alpha-beta pruning as the operating algorithm then 
AI takes only 477 iterations to generate the game state and 
computation time is only 6.00 milliseconds for a difficulty of 
depth 4. 

 

4. COMPARISION BETWEEN MINI-MAX AND 
ALPHA-BETA PRUNING 

As discussed in previous sections it is quite evident 
that mini-max and alpha-beta pruning are not entirely 
different algorithms rather alpha-beta is just an optimized 
version of simple min-max algorithm. 

 

 
Table-1: Comparison between Two Algorithms 

 
In the study carried out it is observed that when the 

user plays the game in single player mode and chooses mini-
max as the operating algorithm then AI takes 7 iterations to 
generate the game state and computation time is 0.00 
milliseconds for a difficulty of depth 1 whereas for the same 
difficulty level alpha-beta pruning also takes 7 iterations and 
0.00 milliseconds to compute. The difference between the 
two algorithms becomes starker when difficulty level is 
increased as it is clear from the observation that for a 
difficulty of depth 4 AI takes 2799 iterations to generate the 
game state and computation time is 33.00 milliseconds in 

case of mini-max whereas for the same difficulty level alpha-
beta pruning takes only 477 iterations and 6.00 milliseconds 
to compute. Further it is observed that when difficulty level 
is increased to 8 which is the toughest level AI takes 
5847005 iterations to generate the game state and 
computation time is 55441.00 milliseconds in case of  mini-
max algorithm whereas  for the same difficulty level alpha-
beta pruning takes only 71773 iterations and 1009.00 
milliseconds to compute. The result has been summarized in 
table-1. 

 

5. HEURISTIC FUNCTION 

The application of heuristic function is to coordinate robot 
agents in adversarial environment [4]. The AI will 
exhaustively evaluate the tree to a certain depth (the 
number of moves to “think ahead”) and then evaluation of 
the board is done using heuristic function. Eventually, as the 
end of the game draws near, the AI finds winning or losing 
states confined to the specified depth and plays perfectly. 
The whole idea here is that AI can be guided to a winnable 
position by heuristic function. A function is implemented 
that calculates the value of the board depending on the 
placement of pieces on the board. This function is often 
referred to as Evaluation Function and sometimes also called 
Heuristic Function [3]. The basic idea behind the heuristic 
function is to allot a high value for a board if maximiser’s 
turn is being played or a low value for the board if 
minimizer’s turn is being played. 

In the actual algorithm it is generateComputerDecision()'s 
responsibility to calculate the most optimal move for the AI 
to play. It is to be kept in mind that the AI is the maximizer 
and human is the minimizer. The aforementioned function 
calls upon the maximizePlay() function with current board 
and the search depth as parameters. The two other 
parameters are alpha and beta. Alpha is the best value that 
the maximizer currently can guarantee at that level or above. 
Beta is the best value that the minimizer currently can 
guarantee at that level or above [6]. The first thing that is 
done is the calculation of the score (value) of the present 
board. Next check if the current state is a terminal state or 
not. The next step is to create multiple game states for the 
next iteration or stage. For each game state created call the 
minimizer function. The minimizer function is structurally 
same as the maximizer function. The board score is 
computed first. Then it is checked if the game state is a 
terminal state or not. A loop is run to generate the next 
iteration of game states. For each game state generated the 
maximizing move for the AI is calculated. The principle of 
alpha beta pruning is applied to reduce the number of game 
states that needs to be checked. This function returns the 
minimum score of the human player. 

The heuristic function calculates two parameters, namely 
human points and computer points. Next, two arrays are 
initialized whose job is to save the winning position of the 
respective player. The next step is to determine score 

Algorithm 
Used 

Mini Max Alpha-Beta Pruning 

Difficulty 
Level 

No. of 
Iterations 
performed 

Computation 
Time (ms) 

No. of 
Iterations 
performed 

Computation 
Time (ms) 

Depth 1 
(Easiest) 

7 0.00 7 0.00 

Depth 4 
(Normal) 

2799 33.00 477 6.00 

Depth 8 
(Hardest) 

5847005 55441.00 71773 1009.00 
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through the amount of available chips. It is done through 
incrementing the human or computer points whenever the 
particular field of the game state is empty or not. The final 
stage is to check if the current state is a winning condition or 
not. 

The actual function that calculates the value of game state 
calculates five parameters, namely vertical points, horizontal 
points, diagonal one point, diagonal two points and the final 
points. Next a nested loop is run for each column, where we 
rate the column according to the aforementioned function 
and the points to the respective column. The same procedure 
is carried out in calculating the horizontal points and the two 
diagonal points. The final points are nothing but the 
summation of the former four points. 

6. CONCLUSION 

In this paper the game of Connect-4 has been implemented 
using two algorithms and comparison between them is 
studied. First algorithm is mini-max algorithm and second 
one is mini-max with alpha beta pruning which is an 
optimized version of mini-max algorithm. The study 
revealed that for the same level of difficulty the two 
algorithms behave very differently in terms of number of 
iterations performed and time taken with alpha beta pruning 
taking much less time and performing very few iterations 
than mini-max to generate the game state.     
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