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Abstract - Brain Machine Interface (BMI), , also termed as 
Direct Neural Interface (DNI), or Brain Computer Interface 
(BCI) is a direct communication pathway between an 
enhanced or wired brain and an external device. BMIs are 
often directed at researching, mapping, assisting, augmenting, 
or repairing human cognitive or sensory motor functions. 
Brain-machine interfaces (BMIs) offer great potential for 
restoring upper limb function. This project aims to automate 
an artificial (or prosthetic) limb, particularly for amputees, 
subjects suffering from local paralysis and even quadriplegics, 
using Brain Machine Interface (BMI) technology. However, 
grasping objects is a complicated task and the signals 
extracted from the brain may not always be capable of driving 
these movements reliably. Vision-guided robotic assistance is 
one possible way to improve BMI performance. We describe a 
method of shared control where the subject controls a 
prosthetic arm using a BMI and receives assistance with 
respect to positioning the hand with precision when it 
approaches an object. 
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1. INTRODUCTION  
 
The automation of a prosthetic limb using BMI is hindered 
by various limitations which negatively impact the system 
performance. The BMI user has limited ability to control the 
robotic arm near an object. As with natural grasping, the 
user must be able to determine how to optimally position the 
hand to grasp the object for the intended action. Currently, 
BMIs for arm control doesn’t provide sensory feedback for 
the system, which may impair the normal grasping process. 
Another potential barrier to optimal performance is that the 
visual feedback that the user receives is of his own arm 
rather than the robotic arm to be controlled, which may 
introduce sensory conflicts. Intelligent, vision-guided robotic 
assistance is one way to improve BMI performance during 
grasping.  
 

 
 

Fig -1: Concept of BMI 
 

2. BRAIN MACHINE INTERFACE 
 
Brain Machine Interface (BMI) or Brain Computer Interface 
(BCI) is a device set up mechanism that translates neuronal 
information into commands capable of controlling external 
software or hardware such as a computer or a robotic arm. 
BMIs are often used as assisted living devices for individuals 
with motor or sensory impairments. For eg: a quadriplegic 
(paralysed from neck down) or an amputee or  partially 
paralysed person thus experiencing restoration of limb 
function via BMI automated Prosthetic Limb. Here subjects 
will be controlling a prosthetic limb via Electroencephalo 

Gram or EEG waves. 
 
2.1 EEG SIGNAL CHARACTERISTICS 
 
Current EEG devices measure potential differences on 
several electrodes placed on the head of the subject and 
digitize it for further analysis. Thus, EEG can be seen as a 
multi-variate time series. EEG signals are very feeble in 
magnitude, in range of fractions of volts even for the 
strongest signals and thus the system deployed must be able 
serve two functions: 

 
1) As per basic theories of Neuroscience, the flow of the fluid 
between two dendrites can have rates that fluctuate at 
different timings depending on the emotional state of the 
person thinking. A person who is calm will have a rate which 
is stealth but slower than a person who is undergoing an 
adrenaline rush due to exasperation or happiness driven 
over-whelming amalgam of emotions, be it when dreaming 
during sleep or when awake. So a decision made by a person 
when sane is more reliable than the decision made by a 
person in haste, which can even be dangerous. But we have 
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to also see that a person's simple thought with no 
seriousness shouldn't translate into an action. So the BMI 
operated headset has to arrive at a compromise between the 
above two mentioned factors. So ideal flow of dendrite fluid 
between two dendrites at the rate ranging from 0.75 to 0.92 
on a scale of 1 should be considered as a standard for healthy 
level and societal acceptance for a BMI system to even 
operate. 
 
2)Since the detected voltages are minute, the raw data 
extracted must be amplified version of actual signals 
recieved for better comprehension of the EEG wave output 
of the subject under study. The EEG signals of each person is 
a unique set of patterns. So if the signal pattern that is 
actually required is not amplified then it will read as a 
distorted signal and the action won't be executed due to lack 
of acknowledging this input as the actual input. 
 
It as an established fact that an if-else algorithm is used 
alongside Fuzzy Clustering mathematical model to make the 
required set of relevant EEG patterns more discrete than the 
redundant set of unwanted signals i.e, If the waves detected 
are within the given set of acceptance, the limb is automated.  
 

 
 

Fig -2: EEG Signal Waveforms 
 

2.2 FLOW OF CONTROL IN A BMI OPERATED SYSTEM 
 
The basic Block Diagram of BMI algorithm on how to 
translate EEG into useful grasping patterns for reference has 
been shown in Figure 3. 
 

 
 

Fig -3: Capturing of EEG signals to formulate useful 
grasping Patterns 

The EEG signals of the subject under study are grasped from 
different cortical points mapped. Since the signals are feeble 
in nature, they are amplified and by Fuzzy mean clustering, 
the relevant set of signals with most amount of similarities in 
traits is selected. This signal set is smoothened; unwanted 
noises are removed and converted into an understandable 
format. The relevance of these patterns to execute the 
required action is estimated or compared with reference 
signals stored and if relevant, the motoring action is 
executed. 
 
The Brain Machine Interface coding Algorithm has been 
shown in Fig-4. The EEG signals received are conditioned to 
obtain waves that can be comprehended in a recognizable 
format. Then using Fuzzy C-Mean clustering, the relevant 
data sets are set and are set as reference using PCA-AAM . 
These patterns actually correspond to a particular action to 
be executed. 
 

 
 

Fig -4: BMI Coding Algorithm 
 

The decoding algorithm is shown in Fig-5.  Raw EEG signals 
received from the subject are compared with the reference 
signals and based on the similarity, the motoring action will 
accordingly be executed if required. 
 
2.3 LIMITATIONS OF BMI 
 
Solitary application of BMI faces limitations, which have 
been elucidated below: 
 
1) Calibration error: Say a person is thinking of grasping an 
object. He or she is only visualizing the distance between him 
or her and the object and not between the limb and the 
object if the limb is far from the body. So the limb will end up 
grasping the wrong object or even nothing due to wrong 
distance input. 
 
2) BMI doesn’t take into account the factors in the 
environment like temperature change, pressure change etc. 
So if a device shouldn't be operated in a particular condition 
of the environment, that caution won't be executed due to 
lack of a rain-check mechanism if that condition is prevalent. 
3) If a system has to be changed in methodology of operation 
only by a minute fraction of the actual essence, the overall 
training of the subject has to be repeated. That is,there is no 
feedback mechanism to improve the system on a continuous 
basis. Thus, to alleviate this issue, Vision Guided Robotics or 
VGR is clubbed with BMI automated system. 
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3. VISION GUIDED ROBOTICS 
 
A Vision Guided Robot (VGR) system is basically a robot 
fitted with one or more cameras used as sensors to provide a 
secondary feedback signal to the robot controller to more 
accurately move to a variable target position. Recent studies 
have shown that brain-machine interfaces (BMIs) offer great 
potential for restoring upper limb function. However, 
grasping objects is a complicated task and the signals 
extracted from the brain may not always be capable of 
driving these movements reliably. Vision-guided robotic 
assistance is one possible way to improve BMI performance. 
As with natural reaching, the user must determine how to 
optimally position the hand to grasp the object for the 
intended action. Currently, BMIs for arm control do not 
provide somatosensory feedback for the user, which may 
impair the normal grasping process. Finally, another 
potential barrier to optimal performance is that the visual 
feedback that a BMI user receives is of a robotic arm rather 
than their own hand, which may introduce sensory conflicts. 

 
3.1 SLAM ALGORITHM 
 
Simultaneous Localization and Mapping or SLAM Algorithm 
is used to trace the relative changes in the odometry of the 
object under study (in our case, to be grasped). SLAM 
consists of multiple parts; Landmark extraction, data 
association, state estimation, state update and landmark 
update. The outline of flow of control for a SLAM algorithm 
operated system has been shown in figure-5. 
 

 
 

Fig -5: Overview of SLAM Algorithm 
 

This visual data is associated or compared with images of 

reference landmarks already saved. Then the either of the 
following situations are possible: 
 

(i) There has been slight change in the position of the 
landmarks thus signifying relative motion between the 
object and the environment from its initial position; 

(ii) A new landmark is showing significant presence in 
repeated scans of the environment; 

(iii) Both of the above situations; 

(iv) There hasn't been a change in the landamarks of the 
environment. 
 
In either way, the odometry data of the system will be fed to 
the Extended Kalman Filter if there is a noted change. An 
EKF (Extended Kalman Filter) is the heart of the SLAM 
process. It is responsible for updating where the robot thinks 
it is based on these features. These features are commonly 
called landmarks. The EKF keeps track of an estimate of the 
uncertainty in the robots position and also the uncertainty in 
these landmarks it has seen in the environment. When the 
odometry changes because the robot moves the uncertainty 
pertaining to the robots new position is updated in the EKF 
using Odometry update. Landmarks are then extracted from 
the environment from the robots new position. The robot 
then attempts to associate these landmarks to observations 
of landmarks it previously has seen. Re-observed landmarks 
are then used to update the robots position in the EKF. 
Landmarks which have not previously been seen are added 
to the EKF as new observations so they can be re-observed 
later.  
 
The mathematical computation is done using the Jacobian 
Measurement Model based matrix formation method. The 
Jacobian of the measurement model is closely related to the 
measurement model, of course. The measurement model 
defines how to compute an expected range and bearing of 
the measurements (observed landmark positions). 
 
3.2 SHARED CONTROL USING BMI AND VGR  
 
The Shared control of a limb using BMI and VGR has been 
showcased in the figure-6. 
 
The switch represents the situation when the Limb is 
attached to your body, thus nullifying the need of VGR. The 
BMI command for a motoring based grasping action is 
issued. Using BMI coding and decoding algorithm 
implementing Fuzzy C-Mean Clustering as discussed earlier, 
the most refined command is extracted and sent to the 
controller. Parallely the odometry changes or prevalent 
conditions are also noted and studied using the VGR system 
via SLAM algorithm as discussed earlier and the odometry 
data is also fed to the controller. 
 
The feasibility of the command by the BMI system is 
compared with the odometry data and if the task is feasible, 
its performed. Or else, based on the odometry data, the arm 
is repositioned and then the task is performed. Also, after the 
task is performed or while performing the task, there will be 
a subsequent odometry change. This is again corrected or 
registered by repeated implementation of SLAM algorithm, 
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data of which is again sent to the controller. Thus, its a 
repeated feedback process like a basic closed loop control 
system, thus improving the performance of the system due 
to changing conditions of environment and/or input signals. 

 

 
 

Fig -6: Automation of a Robotic Limb via Shared Control of 
BMI and VGR 

 

4. EXPERIMENTAL SETUP 
 
The figure-7 summarizes the hardware realisation of the aim 
of this Project. A Robotic Limb was automated using Brain 
Machine Interface (BMI). With the established limitations 
based on odometric calculation to position the arm, based on 
implementing BMI alone, Shared Control via additional 
incorporation of Vision Guided Robotics (VGR) was 
performed. The improvement in the performance of the 
robotic limb was thus observed and hence the aim of the 
project was fulfilled. 
 

 
 

Fig -7: Experimental setup of the project 
 

3. CONCLUSIONS 
 
The combination of BMI and computer vision-based grasping 
creates a system that can allow people without use of their 
arms to control a robotic prosthetic to perform functional 
tasks in cases where neither technology would be sufficient 
on its own. The BMI provides the user with high-level control 
of the pace and goals of the arm movements. The computer 
vision system helps with the details of the movement, 
ensuring a secure grasp in the presented cases, but also by 
identifying how to act on a specific object based on its shape. 
Balancing the control between the user and the automated 
system will provide high performance while ensuring that 
the user feels the device is reliable and responsive to their 
commands in a variety of situations. As both technologies 
continue to improve, robotic prosthetic control makes it both 
easier and more useful for the people who need it. 
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