DESIGN OF THE SUPPORT STRUCTURE FOR THE PIPE LINE SYSTEM

DOREDLA NAGARAJU ${ }^{1}$, BHUKYA PRATHIMA BAI ${ }^{2}$, CHILUKURI TRIPURA REDDY ${ }^{3}$, TADIKAMALLA NARENDRA ${ }^{4}$, K.SIVA REDDY ${ }^{5}$
${ }^{1}$ ASSISTANT PROFESSOR, DEPARTMENT OF CIVIL ENGINEERING, NARASARAOPETA ENGINEERING COLLEGE, NARASARAOPET, INDIA
2,3,4 UG STUDENT, DEPARTMENT OF CIVIL ENGINEERING, NARASARAOPETA ENGINEERING COLLEGE, NARASARAOPET, INDIA

Abstract

This study has been undertaken to investigate the determinants of Design of Support structure in Santhi Nagar near Narasaraopeta using IS 456:2000. The design code for the manufacturing of DI K7 pipes which are to be used for the design of the proposed support structure by using IS 456:200 and Working stress method. To design the support structure, the design requirements to be considered from the existing site conditions and the parameters that are required to be followed for the design water flow and to make the structure to withstand the loads \& forces carried by the supports and the footings. the design was undergone with manual calculations by using standard design practices and this was under the AMRUT scheme prestigiously carried out by the Government of INDIA.

Key Words: water demand, pedestal, footing, working stress method, limit state method, Support structure.

1. Introduction

1.1.Pipes for Water Supply System

Pipes which are commonly used in water supply system are given below.

1. Galvanized Iron (GI) Pipes
2. Concrete Pipes

Galvanized Iron (GI) Pipes:

This type of pipe is used for water supply work inside the building. These pipes are wrought steel pipes provided with zinc coating. They are available in light, medium and heavy grades depending on the thickness of the metal. For a 15 mm GI pipe, the thicknesses are $2.0,2.65$ \& 3.25 for the light, medium and heavy grades, respectively. Generally the medium grade pipes are used for internal plumbing in building. Mostly screw and socket joints are used for G.I. pipes.

Concrete Pipes:

Unreinforced pipes of small diameters as well as reinforced and prestressed concrete pipes of large diameters are available for water supply and other uses. Small unreinforced concrete pipes are very much used for drainage of rain water. Large diameter pipes are generally used for major water supply works.

Isolated footings can have different shapes in plan; generally, it depends upon the shape of cross section of the column.

2. OBJECTIVES FOR THE STUDY

1) To prepare a design of a new water pipe line system by using design standards.
2) To select pipe material and pipe size according to design standards.

3. RESEARCH METHODOLOGY

Data:

Inner dia of pipe ID 600 mm
Thickness of inlining $t_{1} \quad 12 \mathrm{~mm}$
Thickness of pipe shell $t_{s} \quad 6 \mathrm{~mm}$
Thickness of gunniting $t_{g} \quad 12 \mathrm{~mm}$
Outer dia of the pipe OD 660 mm As per IS 2062-2006,
min.yield stress for welded pipe, fy 2500 ksc
Unit weight of steel $\quad g_{s} \quad 7850 \mathrm{~kg} / \mathrm{m} 3$
Unit weight for internal cement mortar lining

$$
g_{\mathrm{m}} \quad 2200 \mathrm{~kg} / \mathrm{m} 3
$$

Unit weight of water
giv $\quad 1000 \mathrm{~kg} / \mathrm{m} 3$
Maximum internal pressure
$p_{\text {w }} \quad 0.17 \mathrm{Mpa}$

Spacing of supports, pedestal
L $\quad 5.00 \mathrm{~m}$
Angle of bedding
$\beta \quad 120$ deg

Weight calculation (pipe with water in it)

Weight of inlining $=\pi^{*}(0.6+0.012) * 0.012 * 2200$

$$
=50.758 \mathrm{~kg} / \mathrm{m}
$$

Weight of the pipe shell =

$$
\pi^{*}(0.6+2 * 0.012+0.006) * 0.006 * 7850
$$

$$
=\quad 93.22 \mathrm{~kg} / \mathrm{m}
$$

Weight of gunniting =
$\left.\pi^{*}(0.6+2 *(0.012+0.006)+0.012) * 0.012 * 220\right)$

$$
=\quad 53.744 \mathrm{~kg} / \mathrm{m}
$$

Weight of water running in the pipe = $\pi^{*} 0.6^{\wedge} 2 / 4^{*} 1000$

$$
=\quad 280.743 \mathrm{~kg} / \mathrm{m}
$$

Total load due to the pipe and water in it $=$
$50.758+93.22+53.744+282.743$

$$
=\quad 480.5 \mathrm{~kg} / \mathrm{m}
$$

(a) Maximum value of localized stress in pipe (saddle stress)

$$
\mathbf{F I}=\mathbf{K} * \mathbf{p} / \mathbf{t}^{2 *} \log (\mathrm{r} / \mathrm{t})
$$

Where,
k a factor obtained from expression (0.02-0.00012($\beta-90$))
B angle of support
$\mathrm{K}=0.0164$
P saddle reaction including 10% for continuity

$$
=2642.60 \mathrm{~kg}
$$

t_{s} Shell thickness $=6 \mathrm{~mm}$
R radius of pipe, (D/2) $=300 \mathrm{~mm}$
$\mathrm{F}_{1} \quad=\quad 470.949 \mathrm{ksc}$
(b)Bending stress
$F_{b}=$ bending moment / modulus of shell plate
Where, bending moment, M

$$
\begin{aligned}
& =W L^{2} / 8 \\
& =\quad 480.465^{*} 5^{\wedge} 2 / 8 \\
& =\quad 1501.5 \mathrm{~kg}-\mathrm{m} \\
& =(22 / 7)^{*} 300^{\wedge} 2^{*} 6 / 1000 \\
& =\quad 1696 \mathrm{~cm}^{\wedge} 4 \\
& =1501.5^{*} 100 / 1696 \\
& =\quad 88.53 \mathrm{ksc}
\end{aligned}
$$

$$
\text { Sectional } \mathrm{n} \pi^{*} R^{2 *} \mathrm{t}=(22 / 7)^{*} 300^{\wedge} 2^{*} 6 / 1000
$$

(c)Hoop stress

$$
\mathbf{F}_{\mathbf{h}}=\mathbf{P}^{*} \mathbf{d} / 2 / \mathbf{t} \quad 1.7^{*}(60 / 2)(0.6)=\quad 85 \mathrm{ksc}
$$

(d) Rim stress

$$
\mathbf{F}_{\mathrm{r}}=\mathbf{F}_{\mathrm{h}} / 4=\quad 85 / 4 \quad=\quad 21.25 \mathrm{ksc}
$$

LONGITUDINAL STRESS

Maximum permissible longitudinal stress
$\mathrm{F}^{\prime}=$ fy *0.6*efficiency of circumferential joint = 2500*0.6*0.8
$\mathrm{F}^{\prime}=1200 \mathrm{ksc}$
Total actual longitudinal stress, $\mathrm{F}^{\prime}=$ saddle stress + bending stress +rim stress

$$
\begin{array}{llc}
& = & \mathrm{fI}+\mathrm{fb}+\mathrm{fr} \\
& =470.949+88.53+21.25 \\
\text { F' } & =\quad 580.7
\end{array}
$$

$\mathrm{ksc}<1200$ SAFE

CIRCUMFERENTIAL STRESS

Maximum permissible circumferential stress
F" = Fy* 6*efficiency of longitudinal joint *
$=\quad 2500 * 0.6 * 0.9$
$\mathrm{F}^{\prime \prime}=1350 \mathrm{ksc}$
Total circumferential stress, $\mathrm{F}^{\prime \prime}=$ saddle stress + hoop stress $=\mathrm{fI}+\mathrm{fh}$

$$
\begin{aligned}
& =470.949+85 \\
\mathrm{~F}^{\prime \prime} & =555.9 \quad \text { ksc }<1350 \quad \text { SAFE }
\end{aligned}
$$

Hence, c/c distance between the supports, (i.e, pedestal),
5 m is sufficient for angle of support being 120 deg.

DESIGN OF SUPPORT STRUCTURE, PEDESTAL 'P’

Grade of concrete
M20
Grade of steel Fe 500
Permissible stress in compression, bending, $\sigma c b c$

$$
=\quad 7 \mathrm{~N} / \mathrm{mm}^{2}
$$

Permissible stress in compression, direct, $\sigma c \mathrm{c}$

$$
=\quad 5 \mathrm{~N} / \mathrm{mm}^{2}
$$

Permissible tensile stress in steel

$$
=\quad 230 \mathrm{~N} / \mathrm{mm}^{2}
$$

Design constants

15.45*SIN (27*PI 0/180)

Horizontal component $\quad=\quad 13.77 \mathrm{KN}$ 15.45*COS (27*PI ()/180)

Reaction due to pipe and water on support
$=26.89$
KN
Self-weight of the pedestal $=\quad 29.9 \mathrm{KN}$
Total load coming on to the support $=63.8 \mathrm{KN}$ Pedestal design

Dimensions of pedestal

Either side offset lengthwise $=0.200 \mathrm{~m}$
The distance between the offsets $=\quad 0.600 \mathrm{~m}$
Length $\quad\left(0.6+2^{*} 0.2\right)=1.000 \mathrm{~m}$
Width $=0.230 \mathrm{~m}$

Height of the support

Above ground level $=4.00 \mathrm{~m}$ (upto the base of pipe)
Below ground level $=1.100 \mathrm{~m}$ (upto the base of pedestal)
Total height $=5.100 \mathrm{~m}$
Stress on concrete support $=$ load/area
63.793/(1*0.23)
$=277.361 \mathrm{KN} / \mathrm{m}^{2}$
Permissible stress on concrete $=5000 \mathrm{KN} / \mathrm{m}^{2}$

$$
277.361<5000 \mathrm{KN} / \mathrm{m}^{2}
$$

(The size of the pedestal, ($1 \mathrm{~m}^{*} 0.23 \mathrm{~m}$), is provided based on the structural requirement of pi and ring girder. The actual stress on concrete is $277.36 \mathrm{kN} /$ Sq.m, which is very meager.)

Design for pedestal

Reinforcement

To determine the gross area of the pedestal
$\mathrm{P}=\sigma c c . A c \quad+\sigma_{\mathrm{Sc}} . \mathrm{Asc}$
$=5 \mathrm{~N} / \mathrm{mm}^{2}$
(permissible stress in
concrete)
asc $\quad=230 \mathrm{~N} / \mathrm{mm}^{2}$
(permissible stress in steel)
Ac $\quad=$ net area of the concrete
section $\left(\mathrm{mm}^{2}\right)$
Asc $\quad=c / s$ area of the
longitudinal bar R/F (mm^{2})
Dia of bar Φ
$=10 \mathrm{~mm}$
$\mathrm{A}_{\text {sc }}$
$\pi^{*}(10)^{\wedge} 2 / 4=78.54 \mathrm{~mm}^{2}$
Ag_{g}
P = percentage of steel
assumed

However provide reinforcement of 10 mm dia bars @ 2

DESIGN OF FOUNDATION FOR SUPPORT [P]

DATA

Unit weight of concrete	$=25$
KN / m^{a}	$=21$
Unit weight of soil	
KN / m^{a}	M20

Details for footing design

Maximum load of pipe @ support $R_{B} R_{\mathbb{L}}=63.793 \mathrm{KN}$
Weight of the pedestal $=\quad L^{*} B^{*} H *$ unit weight
$[5.265 * 1 * 0.23 * 25]=30.274 \mathrm{KN}$
Deduction for the portion OAXB
Area of OAXB $=\quad \Theta / 360^{*}\left(\pi r^{2}\right)=0.443$
m

$$
\begin{array}{clc}
& = & 120 / 360 *(\pi * 0.33)^{\wedge} 2 \\
& = & 0.114 m^{2}=0.1329 \mathrm{~m} \\
\mathrm{OX} & = & (\mathrm{d} / 2)^{\prime} \sin (30) \\
& = & 0.165 \mathrm{~m} \\
\mathrm{X}^{\prime} \mathrm{X}= & (\mathrm{D} / 2)-\mathrm{ox} \\
& = & 0.165 \mathrm{M} \\
\mathrm{AB}=\quad & (0.66 / 2)^{*} \sin (120) / \sin (30) \\
& = & 0.600 \mathrm{M} \\
\text { Area of OAB } & =\quad 0.05 \mathrm{~m}^{2}=0.5 * 0.165^{*} 0.6
\end{array}
$$

$$
X^{\prime} X=\quad(D / 2)-o x^{\prime}
$$

Area of AXB	$=$	area of OAXB -area of OAB
	$=$	$0.114-0.05$
Area of AXB	$=$	$0.064 \mathrm{~m}^{a}$
Vol.	$=0.015 \mathrm{~m}^{a}$	

Total weight of the portion to be deducted

$$
\begin{aligned}
& =\quad 0.375 \mathrm{KN} \\
& 0.015 * 25
\end{aligned}
$$

Actual weight of the pedestal $30.274-0.375$ $=\quad 29.899$
$=\quad 29.899 \mathrm{KN}$
Pedestal dimension
Lenth $=1 \mathrm{~m}$
Width $=0.23 \mathrm{~m}$
Base area $={ }^{`} 0.23 \mathrm{~m}^{2}$
Load at the base portion $=\quad 93.692 \mathrm{KN}$
Stress $=93.692 / 0.23=407.357 \mathrm{KN} / \mathrm{m}^{2}$

Footing dimension

Projection on either side of width of pedestal $\quad W=$ 0.45 m

Projection on either side of length of pedestal $L=0.45 \mathrm{~m}$
Depth of foundation excluding pedestal $\quad=0.6 \mathrm{~m}$
Width of foundation $0.23+2 * 0.45=1.13 \mathrm{~m}$
Length of foundation $1+2^{*} 0.45 \quad=1.9 \mathrm{~m}$
Depth of foundation $\quad=0.6 \mathrm{~m}$
Base area of foundation $1.13^{*} 1.9=2.147$
m^{2}
Load at the base portion $=93.692+$
(2.147*0.6*25)
$=\quad 125.897 \mathrm{KN}$

Moment due to the horizontal component of longitudinal force of water in pipe

Horizontal component	$=$	13.77 KN
Moment	$=$	$83.03 \mathrm{KN}-\mathrm{m}$
	$=$	$83030000 \mathrm{~N}-\mathrm{mm}$

Moment due to frictional force, M_{1}
$M_{1} \quad=\quad 77923000 \mathrm{~N}-\mathrm{mm}$
Moment due to passive pressure of soil, \mathbf{M}_{2}
Height of soil up to footing base $=1.7 \mathrm{~m}$
Angle of internal friction of soil $=30 \mathrm{deg}$
Passive earth pressure $\mathrm{k}_{\mathrm{p}} \gamma \mathrm{H}=107.1 \mathrm{KN} \cdot \mathrm{m}^{2}$
Passive force $\quad\left(\mathrm{k}_{\mathrm{p}} \gamma \mathrm{H}\right) \mathrm{H} / 2 \mathrm{~L}_{\mathrm{f}}=172.967 \mathrm{kn}$
Lever arm for soil portion from base of footing

$$
=\quad 0.567 \mathrm{~m}
$$

Moment due to passive force of soil, M_{2}
$=\quad 172.967^{*} 0.567$
$=\quad 98.072 \mathrm{KN}-\mathrm{m}$
$\mathrm{M}_{2} \quad=\quad 98072000 \mathrm{~N}-\mathrm{mm}$

Moment due to active pressure of soil, M_{3}

Active earth pressure $\quad \mathrm{k}_{\mathrm{a}} \gamma \mathrm{H}=11.9 \mathrm{KN} / \mathrm{m}^{2}$
Active force $\quad\left(\mathrm{k}_{\mathrm{a}} \gamma \mathrm{H}\right) \mathrm{H} / 2^{*} \mathrm{~L}_{\mathrm{f}}=\quad 19.219 \mathrm{KN}$
Lever arm for soil portion from base of footing 0.567 m

Moment due to active force of soil, M_{3}

$$
\begin{array}{ll}
= & 19.219 * 0.567 \\
= & 10.897 \mathrm{KN}-\mathrm{m} \\
= & 10897000 \mathrm{~N}-\mathrm{mm}
\end{array}
$$

Design of section

M_{4}	$\mathrm{P}_{0} \mathrm{~L} / 8^{*}(\mathrm{~B}-\mathrm{b})^{2}$			
B	$\begin{aligned} & =1.13 \mathrm{~m} \\ & 1.9 \mathrm{~m} \end{aligned}$	$1.9 \mathrm{~m}$	L	=
b	$\begin{aligned} & =0.23 \mathrm{~m} \\ & 1 \mathrm{~m} \end{aligned}$		I	=
area of the footing at the base		A	$=$	BL
				m^{2}
Weight coming on the footing W				

Net uupward pressure at the footing,
$\mathrm{p}_{0}=\mathrm{W} / \mathrm{A}=93.692 / 2.147=43.639 \mathrm{KN} / \mathrm{m}^{2}$
$\mathbf{M}_{4}=\left(43.639^{*} 1.9\right) / 8^{*}(1.13-0.23)^{\wedge} 2=8.395 \mathrm{KN}-\mathrm{m}$ $=8.395^{*} 10^{\wedge} 6 \mathrm{~N}-\mathrm{mm}$
Total moment acting on footing, $\mathrm{M}=[\mathrm{M} 1-\mathrm{M} 2+\mathrm{M} 3]+\mathrm{M} 4$ $=17.647^{*} 10^{\wedge} 6 \quad \mathrm{~N}-\mathrm{mm}$

```
\(\mathrm{d}=\sqrt{\left\{\frac{M}{(Q L)}\right\}}\)
    \(=\left\{\left(17.647^{*} 10^{\wedge} 6\right) /\left(0.9132^{*} 1900\right)\right\}^{\wedge}(1 / 2)\)
    \(=100.85 \mathrm{~mm}\) required
    \(=\quad 544.00 \mathrm{~mm}\) provided
    Hence safe
```

Check for shear (width wise)
One way shear

Shear force, "F"	$=1 / 2^{*}[\mathrm{~B}-\mathrm{b}]-\mathrm{d}$
V	$=\mathrm{p}_{0} \mathrm{~F}$
V	$=43.639^{*}\left(0.5^{*}(1.13-0.23)-\right.$
$0.544)^{*} 1$	
	$=-4.102 \mathrm{KN}$
τv	$=\mathrm{v} / \mathrm{bd}$
	$=-4102 /\left(1000^{* 544}\right)$
	$=-0.008 \mathrm{~N} / \mathrm{mm}^{2}$
Permissible shear stress	$=\mathrm{k} \tau c$

(bD)

0.12/100*1000*600	=	$720 \mathrm{~mm}^{2}$
Dia of the bar	=	12 mm
Area of a single bar	=	$113.097 \mathrm{~mm}^{2}$
Spacing required $\mathrm{A}_{\mathrm{b}}{ }^{*} 1000 / \text { Ast }$		=
113.097*1000/720	$=$	157.079 mm
Say 150 mm		
Area of steel provided	=	$753.98 \mathrm{~mm}^{2}$
Hence okay		
Therefore, provided 12 mm length direction		$50 \mathrm{~mm} \mathrm{c} / \mathrm{c} \mathrm{al}$

3. CONCLUSIONS

As we had encountered canal as obstruction while laying the pipeline system, so we had divided the total obstruction length into 4 bays \& 3 support structures are proposed for total length. For each individual support structure, force of gravity, pipe load (with water) and water pressure on the walls of the support structure are considered to transfer the forces through the pedestal to the proposed footings of the support structure. Under the maximum operating pressure designed according to IS 8329: 2000 (ANNEX "E" Table-I), IS 456:2000 and working stress methods are adopted. From the methodology we need to provide a pedestal of Length 1.000 m , Width 0.230 m , Total height 5.100 m \& footing with width of foundation 1.13 m , Length of foundation 1.9 m , Depth of foundation 0.6 m is to be provided for the design considerations.

REFERENCES

[1].Doredla Nagaraju, Bhukya Prathima Bai, Chilukuri Tripura Reddy, Tadikamalla Narendra, K Siva Reddy, , , ."Design of the Pipe Line System for The Replacement Of Existing Detoriorated Pipe Line Network", Volume 6, Issue III, International Journal for Research in Applied Science and Engineering Technology (IJRASET) Page No: , ISSN : 23219653
[2].Al Nageim, H., Durka, F., Morgan, W. \& Williams, D.T. 2010. Structural mechanics: loads, analysis, materials and design of structural elements. 7th edition. London, Pearson Education.
[3].Nelson, G.L., Manbeck, H.B. \& Meador, N.F. 1988. Light agricultural and industrial structures: analysis and design. AVI Book Co.Prasad, I.B. 2000.
[4].A text book of strength of materials. 20th edition. 2B, Nath Market, Nai Sarak, Delhi, Khanna Publishers.Roy, S.K. \& Chakrabarty, S. 2009.
[5].Fundamentals of structural analysis with computer analysis and applications. Ram Nagar, New Delhi, S. Chand and Co. Ltd.Salvadori, M. \& Heller, R. 1986.
[6].Structure in architecture: the building of buildings. 3rd edition.Englewood Cliffs, New Jersey, Prentice-Hall.Whitlow, R.1973. Materials and structures. New York, Longman.

BIOGRAPHIES

DOREDLANAGARAJU M.Tech [SE],MBA, LMISTE, AMIE,J r. AM.ASCE, Assistant Professor, Department of Civil Engineering, Narasaraopeta Engineering College [Autonomous], Narasaraopet, Andhra Pradesh, India.

BHUKYA PRATHIMA BAI, UG STUDENT, Department of Civil Engineering, Narasaraopeta Engineering College [Autonomous], Narasaraopet, Andhra Pradesh, India.

CHILUKURI TRIPURA REDDY, UG STUDENT
Department of Civil Engineering, Narasaraopeta Engineering College[Autonomous], Narasaraopet, Andhra Pradesh,India.

TADIKAMALLA NARENDRA, UG STUDENT
Department of Civil Engineering, Narasaraopeta Engineering College [Autonomous], Narasaraopet, Andhra Pradesh,India.

K.SIVA REDDY
UG STUDENT
Department of Civil Engineering, Narasaraopeta Engineering
College,[Autonomous], Narasaraopet, Andhra Pradesh, India.

