DESIGN OF THE SUPPORT STRUCTURE FOR THE PIPE LINE SYSTEM

DOREDLA NAGARAJU¹, BHUKYA PRATHIMA BAI², CHILUKURI TRIPURA REDDY³, TADIKAMALLA NARENDRA⁴, K.SIVA REDDY⁵

¹ ASSISTANT PROFESSOR, DEPARTMENT OF CIVIL ENGINEERING, NARASARAOPETA ENGINEERING COLLEGE, NARASARAOPET, INDIA

^{2,3,4} UG STUDENT, DEPARTMENT OF CIVIL ENGINEERING, NARASARAOPETA ENGINEERING COLLEGE, NARASARAOPET, INDIA ***

Abstract: This study has been undertaken to investigate the determinants of Design of Support structure in Santhi Nagar near Narasaraopeta using IS 456:2000. The design code for the manufacturing of DI K7 pipes which are to be used for the design of the proposed support structure by using IS 456:200 and Working stress method. To design the support structure, the design requirements to be considered from the existing site conditions and the parameters that are required to be followed for the design water flow and to make the structure to withstand the loads & forces carried by the supports and the footings .the design was undergone with manual calculations by using standard design practices and this was under the AMRUT scheme prestigiously carried out by the Government of INDIA.

Key Words: water demand, pedestal, footing, working stress method, limit state method, Support structure. **1. Introduction**

1.1.Pipes for Water Supply System

Pipes which are commonly used in water supply system are given below.

- 1. Galvanized Iron (GI) Pipes
- 2. Concrete Pipes

Galvanized Iron (GI) Pipes:

This type of pipe is used for water supply work inside the building. These pipes are wrought steel pipes provided with zinc coating. They are available in light, medium and heavy grades depending on the thickness of the metal. For a 15 mm GI pipe, the thicknesses are 2.0, 2.65 & 3.25 for the light, medium and heavy grades, respectively. Generally the medium grade pipes are used for internal plumbing in building. Mostly screw and socket joints are used for G.I. pipes.

Concrete Pipes:

Unreinforced pipes of small diameters as well as reinforced and prestressed concrete pipes of large diameters are available for water supply and other uses. Small unreinforced concrete pipes are very much used for drainage of rain water. Large diameter pipes are generally used for major water supply works. Isolated footings can have different shapes in plan; generally, it depends upon the shape of cross section of the column.

2. OBJECTIVES FOR THE STUDY

- 1) To prepare a design of a new water pipe line system by using design standards.
- 2) To select pipe material and pipe size according to design standards.

3. RESEARCH METHODOLOGY

Data:

Inner dia of pipe	ID	600 mm
Thickness of inlining	t_1	12 mm
Thickness of pipe shell	ts	6 mm
Thickness of gunniting	t _g	12 mm
Outer dia of the pipe	OD	660 mm
As per IS 2062-2006,		
min.yield stress for we	lded	pipe, fy 2500 ksc
Unit weight of steel	g s	7850 kg/m3
Unit weight for interna	al cen	ient mortar lining
g _m 2200	kg/n	13

Unit weight of water g_w 1000 kg/m3 Maximum internal pressure p_w 0.17 Mpa International Research Journal of Engineering and Technology (IRJET) e-ISSI

IRJET Volume: 05 Issue: 04 | Apr-2018

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

 $\begin{array}{cc} \text{Spacing of supports, pedestal} \\ L & 5.00 \text{ m} \end{array}$ Angle of bedding $\beta & 120 \text{ deg} \end{array}$

Weight calculation (pipe with water in it)

Weight of inlining = $\pi^{*}(0.6+0.012)^{*}0.012^{*}2200$ = 50.758 kg/m Weight of the pipe shell = $\pi^{*}(0.6+2*0.012+0.006)*0.006*7850$ = 93.22 kg/m Weight of gunniting = $\pi^{*}(0.6+2^{*}(0.012+0.006)+0.012)^{*}0.012^{*}220)$ = 53.744 kg/m Weight of water running in the pipe = $\pi^*0.6^2/4^*1000$ = 280.743 kg/m

Total load due to the pipe and water in it = 50.758+93.22+53.744+282.743

= 480.5 kg/m

(a) Maximum value of localized stress in pipe (saddle stress)

$FI = K * p/t^2 * \log(r/t)$

Where,

k	a factor obtained from expression (0.02-0.00012(β-90))			
В	angle of support			
К	= 0.0164			
Р	saddle reaction includi	ng 10%	6 for continuity	
	= 2642.60 kg			
t_s	Shell thickness	=	6 mm	
R	radius of pipe, (D/2)	=	300 mm	

F ₁	=	470.949 ksc
• 1		170.717136

(b)Bending stress

F_b = bending moment / modulus of shell plate

Where,	bending moment, M	= WL ² /8

	= 480.465*5^2/8
	= 1501.5 kg-m
Sectional n π* R ² *t	=(22/7)*300^2*6/1000
	= 1696 cm^4
$\mathbf{f}_{\mathbf{b}}$	=1501.5*100/1696
	= 88.53ksc
oop stress	

(c)Hoop stress

$$F_h = P^* d/2/t$$
 1.7*(60/2)(0.6) = 85 ksc

(d) Rim stress

 $F_r = F_h/4 = 85/4 = 21.25 \text{ ksc}$

LONGITUDINAL STRESS

Maximum permissible longitudinal stress

F' = fy *0.6*efficiency of circumferential joint	=
2500*0.6*0.8	

F' = 1200 ksc

Total actual longitudinal stress, F' = saddle stress +bending stress +rim stress

			=	fI + fb + fr
			= 470).949+88.53+21.25
		F'	=	580.7
ksc <	1200	SAFE		

CIRCUMFERENTIAL STRESS

Maximum permissible circumferential stress

F"= Fy* 6*efficiency of longitudinal joint = 2500*0.6*0.9

F'' = 1350 kscTotal circumferential stress, F'' = saddle stress +hoop stress= fI + fh = 470.949+85 F'' = 555.9 ksc <1350 SAFE

Hence, c/c distance between the supports, (i.e, pedestal), 5m is sufficient for angle of support being 120 deg.

DESIGN OF SUPPORT STRUCTURE, PEDESTAL 'P'

Grade	of concre	ote	M20	
	of steel	Fe 500	1120	
0.0000		ess in compressio	n hendii	ng gchc
I CI IIII:	=	7 N/mm^2	n, benan	ig, 0000
Permis	sible stro =	ess in compressio 5 N/mm ²	n, direct,	, σcc
Permis	sible ten =	sile stress in steel 230 N/mm ²		
Desigr	i constai	nts		
m	=	280/(3 σcbc)	=	13.3333
k	=	m σcbc / (m σcb	ec)=	0.2887
j	=	1- k/3	=	0.9038
Q	=	½ kj σcbc	=	0.9132
Θ	= tan ⁻	$\left(\frac{H}{L}\right)$	=	27 deg
Hoop force in pipeline,σ _t			=	PD/2
			=	51 KN
Longitudinal force in the pipeline		e =	0.303* σt	
			=	15.45 KN

Vertical component

7.01 KN

=

International Research Journal of Engineering and Technology (IRJET)

e-ISSN: 2395-0056 p-ISSN: 2395-0072

IRJET Volume: 05 Issue: 04 | Apr-2018

www.irjet.net

	15.45*S	SIN (27*)	PI ()/180))
Horizontal component		=	13.77 K	ΣN
	15.45*0	COS (27*	PI ()/18	0)
Reaction due to pipe and KN	l water o	n suppo	rt	= 26.89
Self-weight of the pedest	tal		=	29.9 KN
Total load coming on to Pedestal design	o the sup	oport =	63.8 KN	Į
Dimensions of pedesta	1			
Either side offset lengthy	wise	=	0.200 n	1
The distance between th	e offsets	=	0.600 n	1
Length (0.6+2*	[•] 0.2)	=	1.000 n	ı
Width		=	0.230 n	ı
Height of the support				
Above ground level = 4.0)0 m (up	to the ba	se of pip	e)
Below ground level = 1.1	00 m (uj	pto the b	ase of pe	edestal)
Total height =	5.10	00 m		

Total height =		5.10	JU III	
Stress on concrete su	upport	=	load/ar	ea
63.793/(1*0.23)		=	277.361	KN/m^2
Permissible stress or	n concret	te	=	5000 KN/m ²
		277	.361< 50	$000 \text{ KN}/m^2$

(The size of the pedestal, (1m*0.23m), is provided based on the structural requirement of pi and ring girder. The actual stress on concrete is 277.36 kN/Sq.m, which is very meager.)

Design for pedestal

Reinforcement

To determine the gross area of the pedestal

	$P = \sigma cc. Ac + \sigma sc. Asc$
σcc	$= 5 \text{ N/mm}^2$
	(permissible stress in
concrete)	
σsc	$= 230 \text{ N/mm}^2$
	(permissible stress in steel)
Ac	= net area of the concrete
section (mm ²)	
Asc	= c/s area of the
longitudinal bar R/F (mm ²))
Dia of bar \Phi	= 10 mm
A _{sc}	$\pi^{*}(10)^{2}/4 = 78.54 \ mm^{2}$
Ag	$= \frac{p}{\sigma c c (1-p) + \rho \sigma s c}$
P assumed	= percentage of steel

resist direct stress)	= 1% (minimum 0.8% to
	63.793+1000
Ag	5*(1-0.01)+0.01*230
	$=$ 8799.034 mm^2
Area of steel required	= 1% of Ag
0.01*8799.034	$= 88 mm^2$
Spacing of the bars required	= 1230 mm
Provided say	200 mm
Number of longitudinal bars pedestal/spacing	provided = perimeter of the
2*(1000+230)/200	= 12.3
	Say 14 no's
Area of steel provided bars	= area of bar*number of
78.54*14	$=$ 1099.56 mm^2
Area of steel provided	area of steel required
1099.56 > 87.	99 mm ² SAFE
Minimum area steel required	= 0.12% of BD
0.23*1*0.12/100	= 276 mm ² SAFE

However provide reinforcement of 10 mm dia bars @ 2

DESIGN OF FOUNDATION FOR SUPPORT [P]

DATA

Unit weight of concrete KN/m ³	=	25
Unit weight of soil KN/m ³	=	21
Grade of concrete	M	20

Details for footing design

Maximum load of pipe @ support $R_{B\&}R_{D}$ = 63.793 KN Weight of the pedestal L*B*H *unit weight = [5.265*1*0.23*25] = 30.274KN Deduction for the portion OAXB Area of OAXB = $\Theta / 360^* (\pi r^2) =$ 0.443 m $120/360 * (\pi * 0.33)^{2}$ = $0.114 m^2 = 0.1329 m$ = OX' (d/2) * sin (30)= 0.165 m = X'X = (D/2) - ox'= 0.165 M AB = $(0.66/2) * \sin(120)/\sin(30)$ 0.600 M = $0.05 m^2 = 0.5*0.165*0.6$ Area of OAB =

Volume: 05 Issue: 04 | Apr-2018

www.irjet.net

Area of AXB	=	area of	OAXB –a	rea of O	AB
	=	0.114-0	0.05		
Area of AXB	=	0.064 7	1 ³		
Vol.	=	0.015 7	n ³		
Total weight of	-	on to be	deducted	ł	
	=	0.375 K	IN .		
	0.015*2	-	0.074 07	275	
Actual weight of =	29.899	estal 30	0.274 -0	375	
=	29.899	KN			
Pedestal dimens	sion				
Lenth =	1 m				
Width =					
Base area = `	0.23 <mark>m²</mark>				
Load at the base	portion	=	93.692	KN	
Stress = 93.69	2/0.23	= 407.3	57 KN/m	1 ²	
Footing dimens	sion				
Projection on ei 0.45m	ther side	of widtł	n of pede	stal	W =
Projection on ei	ther side	of lengt	h of pede	estal L =	0.45m
Depth of founda		-	-).6 m
Width of founda	ition	0.23+2	*0.45	= 1.1	13 m
Length of found	ation	1+2*0.4	45	= 1.9	m
Depth of founda			= 0.6 m		
Base area of fou m^2	ndation	1.13*1.	9	=	2.147
Load at the base	portion	= 93.69	2+		
(2.147*0.6*25)	-	=	125.897	7 KN	
Moment due to force of water i		zontal c	ompone	nt of lon	gitudinal
Horizontal com	aanant	=	13.77 K	N	
Horizontal comp Moment	Jonent	-	83.03 K		
Moment		-			m
= 83030000 N-mm Moment due to frictional force, <i>M</i> ₁					
<i>M</i> ₁ =	779230	00 N-mr	n		
Moment due to	passive	pressu	re of soil	l, M ₂	
Height of soil up	o to footii	ng base	=	1.7 m	
Angle of interna	l friction	of soil	=	30 deg	
Passive earth pr	essure	$k_p \gamma H$	=	107.1 KN-	m^2
Passive force	(k _p γH) I	H/2*L _f	=	172.967 kr	ı
Lever arm for soil portion from base of footing = 0.567 m					
0.0040 IDI		T		,	
© 2018, IRJET	ľ	Impac	t Factor	value:	0.171

Moment due to passive force of soil, M_2				
	=	172.967*0.567		
	=	98.072 KN-m		
M_2	=	98072000 N-mm		

Moment due to active pressure of soil, M₃

Active e	earth pre	ssure	$k_a \gamma H$	=	11.9 KN	$\sqrt{m^2}$
Active f	force	(k _a γH) ł	H/2*Lf	=	19.219 KN	
Lever a	Lever arm for soil portion from base of footing 0.567 m					
Momen	t due to	active for	ce of so	il. M3		
	=	19.219*		, .		
	=	10.897	KN-m			
	=	108970	00 N-mi	n		
Design of section						
M_4	=	P ₀ L/8*(B-b) ²			
В	= 1.13 r	n			L	=
	1.9 m					
b	= 0.23 r	n			Ι	=

b I = 1 m area of the footing at the base А BL = $= 2.147 \text{ m}^2$ Weight coming on the footing W =93.692 KN Net uupward pressure at the footing, $43.639 \text{ KN}/m^2$ $p_0 = W/A = 93.692/2.147 =$ $M_4 = (43.639*1.9)/8*(1.13-0.23)^2 =$ 8.395 KN-m = 8.395*10^6 N-mm Total moment acting on footing,M =[M1-M2+M3]+M4 =17.647*10^6 N-mm

$$d = \sqrt{\{\frac{M}{(QL)}\}}$$

= {(17.647*10^6)/(0.9132*1900)}^(1/2)
= 100.85 mm required
= 544.00 mm provided

Hence safe

Check for shear (width wise)

One way shear

Shear force, "F"	=	½*[B-b]-d
V	=	$p_0 F$
V	=	43.639*(0.5*(1.13-0.23)-
0.544)*1		
	=	-4.102 KN
τυ	=	v/bd
	=	-4102/(1000*544)
	=	-0.008 N/mm ²
Permissible shear stress	=	kτc

International Research Journal of Engineering and Technology (IRJET) Volume: 05 Issue: 04 | Apr-2018 www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

IRJET Volume: 05 Issu	e: 04 Apr-2018 www	.irjet.net	p-ISSN: 2395-0072
К	= 1	=	0.23
τς	$= 0.174 \text{ N/mm}^2$	К	
k τc	$= 0.174 \text{ N/mm}^2$	Kτc =	k*0.16 √f ck
As,τν < kτc	safe	=	0.73*0.16*(20)^(1/2)
Two way shear	Sare	=	0.522 N/mm ²
I wo way shear		τς =	1.8 N/mm ² M20
Shear force, "F"	$= P_0[B^2 - b_0^2]$	(table 24, IS 456:2000)	,
	$= p_0[B^2-(b+d)^2]$	As, $\tau v < K \tau c < \tau c \max$ SA	FE
F	= 43.64*[1.13^2-	Check for stability	
(0.23+0.544)^2]		Frictional force	= 13.44 KN
	= 29.6 KN	Active force	= 19.22 KN
τυ	$= F/(4b_0d)$	Passive force	= 172.97 KN
		Force from pipeline	= 125.90 KN
544]	(29.6*1000)/[4*(230+544)*	Safety against sliding:	
511	$= 0.018 \text{ N/mm}^2$	Coefficient of friction, μ	= 0.75
Permissible shear stress	0.01010	Fs = 8.187	> 1 SAFE
К	$=$ (0.15+ β)		
β	= shorter/longer side of	Check for stresses in soil:	
	the column (or) pedestal	P = 125.897 KN	
	= 0.23	M = 17.647 KN-m	
К	= 0.73	A = 2.147 m^2	
Κτα	$= k^* 0.16 \sqrt{fck}$	$z = 0.404 m^3$	
	= 0.73*0.16*(20)^(1/2)	P max P/A+M/Z= (125.897/2	
	$= 0.522 \text{ N/mm}^2$		319 KN/m ²
τς	$= 1.8 \text{ N/mm}^2 \text{ M20}$		58 KN/m^2
(table 24, IS 456:2000)		For no tension condition, minim	,
As, τν < Κτc < τc max	SAFE	Reinforcement calculation	
Check for shear (length	wiso)	Main reinforcement	
	wisej	Area of steel required	= M/(st j d)
One way shear			σ
Shear force,"F"	$= \frac{1}{2}[L-I]-d$	17.647*10^6/(230*0.9038*544	
V	$= p_0 F = -4.102 \text{ KN}$	Dia of the bar	= 12 mm
τυ	= V/bd $=-0.008$ N/mm ²	Area of a single bar	= 113.097 mm ²
Permissible shear stress		Min.Ast required (bD)	= 0.12%
K	= 1	0.12*1000*600/100	= 720 mm ²
τς	$= 0.174 \text{ N/mm}^2$	Spacing required	=
Κτς	$= 0.174 \text{ N/mm}^2$	Ab*1000/Ast	
As, τν < Κτc	safe	113.097*1000/720	= 157.079 mm
Two way shear		Say 150 mm	
Shear force, "F"	$=P_0[L^2 - I_0^2] = P_0[L^2 - (I+d)^2)$ = 53.5 KN	Area of steel provided = Hence okay	753.98 mm ²
τυ	$= F/4I_0d = 0.009 \text{ N/mm}^2$	Percentage of reinforcement pr	nvided = 0.139%
Permissible shear stress	= Kτc	Therefore, provided 12 mm dia	
К	$=$ (0.15+ β)	spacing along width direction	5415 @ 150 mm c/ C
β	= shorter/longer side of	Distribution reinforcement	
the column(or)pedestal	,	Min. area of steel required	= 0.12%

International Research Journal of Engineering and Technology (IRJET) e-

T Volume: 05 Issue: 04 | Apr-2018

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

(bD)

	0.12/100*1000*600	=	720 mm ²
Dia of the bar		=	12 mm
Area of a single bar		=	113.097 mm ²
Spacin	g required		=
	A _b *1000/Ast		
	113.097*1000/720	=	157.079 mm
Say	150 mm		
Area of steel provided		=	753.98 mm^2
Hongo	olvov		

Hence okay

Therefore, provided 12 mm dia bars @ 150 mm c/c along length direction

3. CONCLUSIONS

As we had encountered canal as obstruction while laying the pipeline system, so we had divided the total obstruction length into 4 bays & 3 support structures are proposed for total length. For each individual support structure, force of gravity, pipe load (with water) and water pressure on the walls of the support structure are considered to transfer the forces through the pedestal to the proposed footings of the support structure. Under the maximum operating pressure designed according to IS 8329: 2000 (ANNEX "E" Table -I), IS 456:2000 and working stress methods are adopted. From the methodology we need to provide a pedestal of Length 1.000 m, Width 0.230 m, Total height 5.100 m & footing with width of foundation 1.13 m, Length of foundation 1.9 m, Depth of foundation 0.6 m is to be provided for the design considerations.

REFERENCES

[1].Doredla Nagaraju, Bhukya Prathima Bai, Chilukuri Tripura Reddy, Tadikamalla Narendra, K Siva Reddy, , , ."Design of the Pipe Line System for The Replacement Of Existing Detoriorated Pipe Line Network", Volume 6, Issue III, International Journal for Research in Applied Science and Engineering Technology (IJRASET) Page No: , ISSN : 2321-9653

[2].Al Nageim, H., Durka, F., Morgan, W. & Williams, D.T. 2010. Structural mechanics: loads, analysis, materials and design of structural elements. 7th edition. London, Pearson Education.

[3].Nelson, G.L., Manbeck, H.B. & Meador, N.F. 1988. Light agricultural and industrial structures: analysis and design. AVI Book Co.Prasad, I.B. 2000.

[4].A text book of strength of materials. 20th edition. 2B, Nath Market, Nai Sarak, Delhi, Khanna Publishers.Roy, S.K. & Chakrabarty, S. 2009.

[5].Fundamentals of structural analysis with computer analysis and applications. Ram Nagar, New Delhi, S. Chand and Co. Ltd.Salvadori, M. & Heller, R. 1986.

[6].Structure in architecture: the building of buildings. 3rd edition.Englewood Cliffs, New Jersey, Prentice-Hall.Whitlow, R.1973. Materials and structures. New York, Longman.

BIOGRAPHIES

DOREDLANAGARAJU M.Tech [SE],MBA, LMISTE, AMIE,J r. AM.ASCE, Assistant Professor,

Department of Civil Engineering, Narasaraopeta Engineering College [Autonomous], Narasaraopet, Andhra Pradesh, India.

BHUKYA PRATHIMA BAI, UG STUDENT, Department of Civil Engineering, Narasaraopeta Engineering College [Autonomous], Narasaraopet, Andhra Pradesh, India.

CHILUKURI TRIPURA REDDY, UG STUDENT Department of Civil Engineering, Narasaraopeta Engineering College[Autonomous], Narasaraopet, Andhra Pradesh,India.

TADIKAMALLA NARENDRA, UG STUDENT Department of Civil Engineering, Narasaraopeta Engineering College [Autonomous], Narasaraopet, Andhra Pradesh,India.

K.SIVA REDDY UG STUDENT Department of Civil Engineering, Narasaraopeta Engineering College,[Autonomous], Narasaraopet, Andhra Pradesh, India.