
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2089

BRAIN CANCER DETECTION FROM MRI: A MACHINE LEARNING
APPROACH (TENSORFLOW)

Aaswad Sawant#1, Mayur Bhandari #2, Ravikumar Yadav#3, Rohan Yele#4, Mrs. Sneha Bendale#5

1,2,3,4,5Department Of Computer Engineering, Terna Engineering College, Mumbai University, India

---***---

Abstract - Cancer is one of the most harmful disease. MRI
is one of the procedures of detecting cancer. Machine
learning with image classifier can be used to efficiently
detect cancer cells in brain through MRI resulting in saving
of valuable time of radiologists and surgeons. This research
paper focuses on the use of tensorflow for the detection of
brain cancer using MRI. In tensorflow we implemented
convolutional neural network with 5 layers. Here total 1800
MRI were used in dataset out of which 900 were cancerous
and 900 were non-cancerous. The training accuracy was
found to be 99% and validation accuracy was 98.6% in 35
epochs. This system is still in development. The system can
be used as a second decision by surgeons and radiologists to
detect brain tumor easily and efficiently.

Key Words: Tensorflow, MRI, Epoch, Softmax, Rectified
Linear Unit (RELU), Convolution Neural Network
(CNN).

1. INTRODUCTION

A brain tumor is a collection, or mass, of abnormal cells in
your brain. Symptoms of brain tumors depend on the
location and size of the tumor. It is very crucial to detect
the brain cancer as early as possible.

MRI can be used to detect the brain cancer by analyzing
the MRI but this procedure is vary time consuming for vast
number of cases. The literature survey we did lead us to
the use of convolutional neural network classifier and we
implemented this by using tensorflow[1].

1.1 Tensorflow

TensorFlow [1] is an open source software library
released in 2015 by Google to make it easier for
developers to design, build, and train deep learning
models. TensorFlow originated as an internal library that
Google developers used to build models in-house, and we
expect additional functionality to be added to the open
source version as they are tested and vetted in the internal
flavor. The name TensorFlow derives from the operations
that such neural networks perform on multidimensional
data arrays. These arrays are referred to as "tensors". In
June 2016, Dean stated that 1,500 repositories on GitHub
mentioned TensorFlow, of which only 5 were from Google

Although TensorFlow is only one of several options
available to developers, we choose to use it here because
of its thoughtful design and ease of use.

At a high level, TensorFlow is a Python library that allows
users to express arbitrary computation as a graph of data
flows. Nodes in this graph represent mathematical
operations, whereas edges represent data that is
communicated from one node to another. Data in
TensorFlow are represented as tensors, which are
multidimensional arrays. Although this framework for
thinking about computation is valuable in many different
fields, TensorFlow is primarily used for deep learning in
practice and research.

2. PROCEDURE

2.1 Dataset Acquisition

For any machine learning system data is the single most
important thing. For our case the data we acquired was
from various online resources [3], [4], [5], [6]. The dataset
was in dicom format. We used a tool called mango to
obtain their equivalent JPG/PNG image.

2.1.1 Data Augmentation

Plentiful high-quality data is the key to great machine
learning models. But good data doesn’t grow on trees, and
that scarcity can impede the development of a model. One
way to get around a lack of data is to augment dataset.
Smart approaches to programmatic data augmentation
can increase the size of your training set. Even better, the
model will often be more robust (and prevent overfitting)
and can even be simpler due to a better training set.

Here we flipped each image horizontally and rotation by
300 left as well as right by 300 in training set allowing us to
work on wide variety of data

https://en.wikipedia.org/wiki/Tensor
https://en.wikipedia.org/wiki/GitHub

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2090

Fig -1:Data Augmentation script.

The result of each operation can be seen below.

Fig -2: The original MRI Brain image.

Fig -3: 300 Left rotated MRI Brain image.

Fig -4: 300 Right rotated MRI Brain image.

Fig -5: Vertical Flip of original MRI Brain image.

Fig -6: 300 left rotated Vertical flipped MRI Brain image.

Fig -7: 300 right rotated Vertical flipped MRI Brain image.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2091

2.1.2 Anisotropic Diffusion Filter

2.2 Model Creation

The convolutional neural network architecture
used here is the most basic lenet architecture. This
architecture contains 5 layers, out of which 2 layer are
convolutional layer, the other 2 layers are pooling layer
and last layer is fully connecting layer.

The TensorFlow layers module provides a high-
level API that makes it easy to construct a neural network.
It provides methods that facilitate the creation of dense
(fully connected) layers and convolutional layers, adding
activation functions, and applying dropout regularization.

2.2.1 Convolutional Neural Network:

Convolutional neural networks (CNNs) are the
current state-of-the-art model architecture for image
classification tasks. CNNs apply a series of filters to the
raw pixel data of an image to extract and learn higher-
level features, which the model can then use for
classification. CNNs contains three components:

2.2.1.1 Convolutional layers:

Convolutional layers, which apply a specified
number of convolution filters to the image. For each sub-
region, the layer performs a set of mathematical
operations to produce a single value in the output feature
map. Convolutional layers then typically apply a ReLU
activation function to the output to introduce
nonlinearities into the model.

2.2.1.2 Pooling layers:

Pooling layers, which down sample the image data
extracted by the convolutional layers to reduce the
dimensionality of the feature map in order to decrease
processing time. A commonly used pooling algorithm is
max pooling, which extracts sub-regions of the feature
map (e.g., 2x2-pixel tiles), keeps their maximum value, and
discards all other values.

2.2.1.3 Dense (fully connected) layers:

Dense (fully connected) layers, which perform
classification on the features extracted by the
convolutional layers and down sampled by the pooling
layers. In a dense layer, every node in the layer is
connected to every node in the preceding layer.

Fig -8: LeNet architecture

Typically, a CNN is composed of a stack of convolutional
modules that perform feature extraction. Each module
consists of a convolutional layer followed by a pooling
layer. The last convolutional module is followed by one or
more dense layers that perform classification. The final
dense layer in a CNN contains a single node for each target
class in the model (all the possible classes the model may
predict), with a softmax activation function to generate a
value between 0–1 for each node (the sum of all these
softmax values is equal to 1). We can interpret the softmax
values for a given image as relative measurements of how
likely it is that the image falls into each target class.

2.2.2 CNN Architecture:

The tf.layers module contains methods to create each of
the three layer types above:

 conv2d() : Constructs a two-dimensional
convolutional layer. Takes number of filters, filter
kernel size, padding, and activation function as
arguments.

 max_pooling2d() : Constructs a two-dimensional
pooling layer using the max-pooling algorithm.
Takes pooling filter size and stride as arguments.

 dense() : Constructs a dense layer. Takes number
of neurons and activation function as arguments.
The CNN architecture graph made using above
mentioned methods is shown in below figures.
The network graph was very big so we cropped it
into four parts as seen below.

Fig -9: Network Graph Part1

Fig -10: Network Graph Part2

https://www.tensorflow.org/api_docs/python/tf/layers
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Convolutional_neural_network#Pooling_layer
https://en.wikipedia.org/wiki/Softmax_function

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2092

Fig -11: Network Graph Part3

Fig -12: Network Graph Part4

The various layers are using weights and biases.
The weights and biases are created using following code
snippet.

Fig -13: Weights and Biases creation

The filter size and number of filters in first two
convolutional layers are 3 and 32 respectively. While the
third convolutional layer had same number of filter size
but the number of filters were doubled to 64. The fully
connected layer size used is 128.

Fig -14: Creation of Convolutional layer.

2.3 Epochs, Batch Size and Iterations:

One epoch is one forward pass and one backward pass of
all the training examples through the network. Batch size
is the number of training examples in one
forward/backward pass. The higher the batch size, the
more memory space is required. Number of iterations is
the number of passes, each pass using (batch size) number
of examples. To be clear, one pass is one forward pass +
one backward pass (we do not count the forward pass and
backward pass as two different passes).

In this case we had 1800 MRI in jpg/png format, so the
memory requirement was above average around 8GB. The
batch size is 60 and the number of iterations were 840
which resulted in 840 epochs.

2.4 Learning rate and Optimizer:

The learning rate decided here is α=0.0001 and this
learning rate is utilized by Adam Optimizer [2].

2.4.1 Adam Optimizer:

Adam, an algorithm for first-order gradient-based
optimization of stochastic objective functions, based on
adaptive estimates of lower-order moments. The method
is straightforward to implement, is computationally
efficient, has little memory requirements, is invariant to
diagonal rescaling of the gradients, and is well suited for
problems that are large in terms of data and/or
parameters.

Parameters required (The numbers in bracket are the
optimal values):

β1 — This is used for decaying the running average of the
gradient (0.9)

β2 — This is used for decaying the running average of the
square of gradient (0.999)

α — Step size parameter (0.001)

ε- It is to prevent Division from zero error. (10^-8)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2093

Algorithm:

Fig -14: ADAM optimizer algorithm

The method is also appropriate for non-stationary
objectives and problems with very noisy and/or sparse
gradients. The hyper-parameters have intuitive
interpretations and typically require little tuning.
Empirical results demonstrate that Adam works well in
practice and compares favorably to other stochastic
optimization methods.

3. RESULTS:

The 35 epochs resulted in very high Training accuracy and
validation accuracy. All of the accuracies are recorded in
tf.summary and plotted in tensorboard [1]. The graph
curve show below were calculated on 840 iterations/steps
and their corresponding accuracies.

Fig -15: Training Accuracy

Fig -16: Validation Accuracy

Fig -17: Validation Loss

 The figure shows the validation loss over the
iterations and it is quite uneven in the beginning but
eventually as iterations go on the loss reaches 0.

4. CONCLUSION AND FUTURE WORK

Brain tumor detection is done using MRI and

analyzing it. The machine learning is very powerful
strategy for the detection of the cancer tumor from MRI.
Here we achieved the training accuracy of 99% and
validation accuracy of 98.6%, with validation loss from
0.704 to 0.000 over 35 epochs.

 The method show in this paper is very basic

image classification method of lenet architecture. The
more powerful approaches are available. Our model was
created on the CPU based tensorflow and GPU version of
tensorflow is much faster to train, which will result in
much faster model creation. The more sophisticated
system should take MRI images in dicom format directly
and operate on them.

REFERENCES

[1] Mart´ın Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan
Man´e, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Vi´egas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. “TensorFlow: Large-scale machine learning on
heterogeneous systems”, 2015. Software available
from tensorflow.org.

[2] Adam: A Method for Stochastic Optimization Diederik
P. Kingma, Jimmy Ba arXiv:1412.6980v9 [cs.LG].

[3] Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J,
Farahani K, Kirby J, Burren Y, Porz N, Slotboom J,
Wiest R, Lanczi L, Gerstner E, Weber MA, Arbel T,
Avants BB, Ayache N, Buendia P, Collins DL, Cordier N,
Corso JJ, Criminisi A, Das T, Delingette H, Demiralp Γ‡,

https://arxiv.org/find/cs/1/au:+Kingma_D/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Kingma_D/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Ba_J/0/1/0/all/0/1
https://arxiv.org/abs/1412.6980v9

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2094

Durst CR, Dojat M, Doyle S, Festa J, Forbes F, Geremia
E, Glocker B, Golland P, Guo X, Hamamci A,
Iftekharuddin KM, Jena R, John NM, Konukoglu E,
Lashkari D, Mariz JA, Meier R, Pereira S, Precup D,
Price SJ, Raviv TR, Reza SM, Ryan M, Sarikaya D,
Schwartz L, Shin HC, Shotton J, Silva CA, Sousa N,
Subbanna NK, Szekely G, Taylor TJ, Thomas OM,
Tustison NJ, Unal G, Vasseur F, Wintermark M, Ye DH,
Zhao L, Zhao B, Zikic D, Prastawa M, Reyes M, Van
Leemput K. "The Multimodal Brain Tumor Image
Segmentation Benchmark (BRATS)", IEEE
Transactions on Medical Imaging 34(10), 1993-2024
(2015) DOI: 10.1109/TMI.2014.2377694

[4] Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M,
Kirby JS, Freymann JB, Farahani K, Davatzikos C.
"Advancing The Cancer Genome Atlas glioma MRI
collections with expert segmentation labels and
radiomic features", Nature Scientific Data, 4:170117
(2017) DOI: 10.1038/sdata.2017.117

[5] Spyridon Bakas, Hamed Akbari, Aristeidis Sotiras,
Michel Bilello, Martin Rozycki, Justin Kirby, John
Freymann, Keyvan Farahani, and Christos Davatzikos.
(2017) Segmentation Labels and Radiomic
Features for the Pre-operative Scans of the TCGA-GBM
collection. The Cancer Imaging Archive.
https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

[6] Spyridon Bakas, Hamed Akbari, Aristeidis Sotiras,
Michel Bilello, Michel Rozycki, Justin S Kirby, John B
Freymann, Keyvan Farahani, Christos Davatzikos.
"Advancing The Cancer Genome Atlas glioma MRI
collections with expert segmentation labels and
radiomic features", Nature Scientific Data, 4:170117
doi: 10.1038/sdata.2017.117 (2017).

[7] Isselmou, A. , Zhang, S. and Xu, G. (2016) A Novel
Approach for Brain Tumor Detection Using MRI
Images. Journal of Biomedical Science and
Engineering, 9, 44-52. doi: 10.4236/jbise.2016.
910B006.

[8] E. F. Badran, E. G. Mahmoud and N. Hamdy, "An
algorithm for detecting brain tumors in MRI
images," The 2010 International Conference on
Computer Engineering & Systems, Cairo, 2010, pp.
368-373. doi: 10.1109/ICCES.2010.5674887

[9] Komal Sharma, Akwinder Kaur and Shruti Gujral.
Article: Brain Tumor Detection based on Machine
Learning Algorithms. International Journal of
Computer Applications 103(1):7-11, October 2014.

[10] Athiwaratkun, Ben & Kang, Keegan. (2015). Feature
Representation in Convolutional Neural Networks. .

[11] J. T. Kwak and S. M. Hewitt, "Nuclear Architecture
Analysis of Prostate Cancer via Convolutional Neural
Networks," in IEEE Access, vol. 5, pp. 18526-18533,
2017. doi: 10.1109/ACCESS.2017.2747838

[12] Mahmoud Al-Ayyoub, Ghaith Husari, Ahmad Alabed-
alaziz and Omar Darwish, "Machine Learning
Approach for Brain Tumor Detection", ICICS '12
Proceedings of the 3rd International Conference on
Information and Communication Systems, Article-23,
2012-04-03. ISBN:978-1-4503-1327-8 doi>10.1145/
2222444.2222467

[13] N. Subash and J. Rajeesh, "Brain Tumor Classification
Using Machine Learning" In International Science
Press, I J C T A, 8(5), 2015, pp. 2335-2341

https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
http://dx.doi.org/10.4236/jbise.2016.910B006
http://dx.doi.org/10.4236/jbise.2016.910B006

