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Abstract - Cancer is one of the most harmful disease. MRI 
is one of the procedures of detecting cancer. Machine 
learning with image classifier can be used to efficiently 
detect cancer cells in brain through MRI resulting in saving 
of valuable time of radiologists and surgeons. This research 
paper focuses on the use of tensorflow for the detection of 
brain cancer using MRI. In tensorflow we implemented 
convolutional neural network with 5 layers. Here total 1800 
MRI were used in dataset out of which 900 were cancerous 
and 900 were non-cancerous. The training accuracy was 
found to be 99% and validation accuracy was 98.6% in 35 
epochs. This system is still in development. The system can 
be used as a second decision by surgeons and radiologists to 
detect brain tumor easily and efficiently. 
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1. INTRODUCTION 
 
A brain tumor is a collection, or mass, of abnormal cells in 
your brain. Symptoms of brain tumors depend on the 
location and size of the tumor. It is very crucial to detect 
the brain cancer as early as possible.  
 
MRI can be used to detect the brain cancer by analyzing 
the MRI but this procedure is vary time consuming for vast 
number of cases. The literature survey  we did lead us to 
the use of convolutional neural network classifier and we 
implemented this by using tensorflow[1]. 
 
1.1 Tensorflow 
 
TensorFlow [1] is an open source software library 
released in 2015 by Google to make it easier for 
developers to design, build, and train deep learning 
models. TensorFlow originated as an internal library that 
Google developers used to build models in-house, and we 
expect additional functionality to be added to the open 
source version as they are tested and vetted in the internal 
flavor. The name TensorFlow derives from the operations 
that such neural networks perform on multidimensional 
data arrays. These arrays are referred to as "tensors". In 
June 2016, Dean stated that 1,500 repositories on GitHub 
mentioned TensorFlow, of which only 5 were from Google 
 
Although TensorFlow is only one of several options 
available to developers, we choose to use it here because 
of its thoughtful design and ease of use. 

 
At a high level, TensorFlow is a Python library that allows 
users to express arbitrary computation as a graph of data 
flows. Nodes in this graph represent mathematical 
operations, whereas edges represent data that is 
communicated from one node to another. Data in 
TensorFlow are represented as tensors, which are 
multidimensional arrays. Although this framework for 
thinking about computation is valuable in many different 
fields, TensorFlow is primarily used for deep learning in 
practice and research. 
 

2. PROCEDURE 
 
2.1 Dataset Acquisition  
 
For any machine learning system data is the single most 
important thing. For our case the data we acquired was 
from various online resources [3], [4], [5], [6]. The dataset 
was in dicom format. We used a tool called mango to 
obtain their equivalent JPG/PNG image. 

 
2.1.1 Data Augmentation 
 
Plentiful high-quality data is the key to great machine 
learning models. But good data doesn’t grow on trees, and 
that scarcity can impede the development of a model. One 
way to get around a lack of data is to augment dataset. 
Smart approaches to programmatic data augmentation 
can increase the size of your training set. Even better, the 
model will often be more robust (and prevent overfitting) 
and can even be simpler due to a better training set.  
 
Here we flipped each image horizontally and rotation by 
300 left as well as right by 300 in training set allowing us to 
work on wide variety of data  

https://en.wikipedia.org/wiki/Tensor
https://en.wikipedia.org/wiki/GitHub
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Fig -1:Data Augmentation script. 
 

The result of each operation can be seen below. 
 

 
 

Fig -2: The original MRI Brain image. 
 

 
 

Fig -3: 300 Left rotated MRI Brain image. 

 
 

Fig -4: 300 Right rotated MRI Brain image. 
 

 
 

Fig -5: Vertical Flip of original MRI Brain image. 
 

 
 

Fig -6: 300 left rotated Vertical flipped MRI Brain image. 
 

 
 

Fig -7: 300 right rotated Vertical flipped MRI Brain image. 
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2.1.2 Anisotropic Diffusion Filter 
 

2.2 Model Creation 
 

The convolutional neural network architecture 
used here is the most basic lenet architecture. This 
architecture contains 5 layers, out of which 2 layer are 
convolutional layer, the other 2 layers are pooling layer 
and last layer is fully connecting layer. 

 

The TensorFlow layers module provides a high-
level API that makes it easy to construct a neural network. 
It provides methods that facilitate the creation of dense 
(fully connected) layers and convolutional layers, adding 
activation functions, and applying dropout regularization.  

 

2.2.1 Convolutional Neural Network: 
 

Convolutional neural networks (CNNs) are the 
current state-of-the-art model architecture for image 
classification tasks. CNNs apply a series of filters to the 
raw pixel data of an image to extract and learn higher-
level features, which the model can then use for 
classification. CNNs contains three components: 
 

2.2.1.1 Convolutional layers: 
 

Convolutional layers, which apply a specified 
number of convolution filters to the image. For each sub-
region, the layer performs a set of mathematical 
operations to produce a single value in the output feature 
map. Convolutional layers then typically apply a ReLU 
activation function to the output to introduce 
nonlinearities into the model. 
 

2.2.1.2 Pooling layers: 
  

Pooling layers, which down sample the image data 
extracted by the convolutional layers to reduce the 
dimensionality of the feature map in order to decrease 
processing time. A commonly used pooling algorithm is 
max pooling, which extracts sub-regions of the feature 
map (e.g., 2x2-pixel tiles), keeps their maximum value, and 
discards all other values. 
 

2.2.1.3 Dense (fully connected) layers: 
  

Dense (fully connected) layers, which perform 
classification on the features extracted by the 
convolutional layers and down sampled by the pooling 
layers. In a dense layer, every node in the layer is 
connected to every node in the preceding layer. 
 

 
 

Fig -8: LeNet architecture 

Typically, a CNN is composed of a stack of convolutional 
modules that perform feature extraction. Each module 
consists of a convolutional layer followed by a pooling 
layer. The last convolutional module is followed by one or 
more dense layers that perform classification. The final 
dense layer in a CNN contains a single node for each target 
class in the model (all the possible classes the model may 
predict), with a softmax activation function to generate a 
value between 0–1 for each node (the sum of all these 
softmax values is equal to 1). We can interpret the softmax 
values for a given image as relative measurements of how 
likely it is that the image falls into each target class. 
  
2.2.2 CNN Architecture: 
 
The tf.layers module contains methods to create each of 
the three layer types above: 
 

 conv2d() : Constructs a two-dimensional 
convolutional layer. Takes number of filters, filter 
kernel size, padding, and activation function as 
arguments. 
 

 max_pooling2d() : Constructs a two-dimensional 
pooling layer using the max-pooling algorithm. 
Takes pooling filter size and stride as arguments. 
 

 dense() : Constructs a dense layer. Takes number 
of neurons and activation function as arguments.   
The CNN architecture graph made using above 
mentioned methods is shown in below figures. 
The network graph was very big so we cropped it 
into four parts as seen below.  

Fig -9: Network Graph Part1 

 
Fig -10: Network Graph Part2 

https://www.tensorflow.org/api_docs/python/tf/layers
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Convolutional_neural_network#Pooling_layer
https://en.wikipedia.org/wiki/Softmax_function
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Fig -11: Network Graph Part3 
 

 
 

Fig -12: Network Graph Part4 
 

The various layers are using weights and biases. 
The weights and biases are created using following code 
snippet.  

 

 
 

Fig -13: Weights and Biases creation 
 

The filter size and number of filters in first two 
convolutional layers are 3 and 32 respectively. While the 
third convolutional layer had same number of filter size 
but the number of filters were doubled to 64. The fully 
connected layer size used is 128. 

 

 
 

Fig -14: Creation of Convolutional layer. 
 

2.3 Epochs, Batch Size and Iterations:  
 
One epoch is one forward pass and one backward pass of 
all the training examples through the network. Batch size 
is the number of training examples in one 
forward/backward pass. The higher the batch size, the 
more memory space is required. Number of iterations is 
the number of passes, each pass using (batch size) number 
of examples. To be clear, one pass is one forward pass + 
one backward pass (we do not count the forward pass and 
backward pass as two different passes).  
 
In this case we had 1800 MRI in jpg/png format, so the 
memory requirement was above average around 8GB. The 
batch size is 60 and the number of iterations were 840 
which resulted in 840 epochs. 

 
2.4 Learning rate and Optimizer: 
 
The learning rate decided here is α=0.0001 and this 
learning rate is utilized by Adam Optimizer [2]. 
 
2.4.1 Adam Optimizer: 
 
Adam, an algorithm for first-order gradient-based 
optimization of stochastic objective functions, based on 
adaptive estimates of lower-order moments. The method 
is straightforward to implement, is computationally 
efficient, has little memory requirements, is invariant to 
diagonal rescaling of the gradients, and is well suited for 
problems that are large in terms of data and/or 
parameters.  
 
Parameters required (The numbers in bracket are the 
optimal values): 
 
β1 — This is used for decaying the running average of the 
gradient (0.9) 

β2 — This is used for decaying the running average of the 
square of gradient (0.999) 

α — Step size parameter (0.001) 

ε- It is to prevent Division from zero error. ( 10^-8)  
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Algorithm: 
 

 
 

Fig -14: ADAM optimizer algorithm 
 

The method is also appropriate for non-stationary 
objectives and problems with very noisy and/or sparse 
gradients. The hyper-parameters have intuitive 
interpretations and typically require little tuning. 
Empirical results demonstrate that Adam works well in 
practice and compares favorably to other stochastic 
optimization methods. 
 

3. RESULTS: 
 
The 35 epochs resulted in very high Training accuracy and 
validation accuracy. All of the accuracies are recorded in 
tf.summary and plotted in tensorboard [1]. The graph 
curve show below were calculated on 840 iterations/steps 
and their corresponding accuracies. 

 

 
 

Fig -15: Training Accuracy 
 

 
 

Fig -16: Validation Accuracy 
 

 
 

Fig -17: Validation Loss 
 

 The figure shows the validation loss over the 
iterations and it is quite uneven in the beginning but 
eventually as iterations go on the loss reaches 0. 
 

4. CONCLUSION AND FUTURE WORK 
 
Brain tumor detection is done using MRI and 

analyzing it. The machine learning is very powerful 
strategy for the detection of the cancer tumor from MRI. 
Here we achieved the training accuracy of 99% and 
validation accuracy of 98.6%, with validation loss from 
0.704 to 0.000 over 35 epochs. 

 
 The method show in this paper is very basic 

image classification method of lenet architecture. The 
more powerful approaches are available. Our model was 
created on the CPU based tensorflow and GPU version of 
tensorflow is much faster to train, which will result in 
much faster model creation. The more sophisticated 
system should take MRI images in dicom format directly 
and operate on them.  
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