
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr42018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 294

Significance of Searching and Sorting in Data Structures

Megharaja D.S 1, Rakshitha H J 2, Shwetha K 3

1,2,3 Lecturer, Department of Computer Science, DVS College of Arts and Science, Shivamogga
---***---

Abstract - A data structure is a specialized format for
organizing and storing data. General data structure types
include the array, the file, the record, the table, the tree, and so
on. Any data structure is designed to organize data to suit a
specific purpose so that it can be accessed and worked with in
appropriate ways. Searching is the process of finding a
particular item in a group of items. Not even a single day pass,
when we don’t have to search for something in our day to day
life, like car keys, mobile charger, books etc., Same is the life of
computer, there is so much data stored in it, that whenever a
user asks for some data, computer has to search its memory to
look for the data and make it available to the user. Sorting
refers to rearrangement of data items in a particular order.
We sort the items on a list into alphabetical or numerical
order. We have well-known Sorting techniques to sort
elements either in ascending or descending order. Searching
and Sorting are the most basic problems in computer science,
as it is used in most of the software applications. The computer
has its own techniques to search and sort the elements
through its memory, which we look here.

Key words: Algorithm, Linear Search, Binary Search,
Insertion Sort and Quick Sort.

1. INTRODUCTION

Search is process of finding a value in a list of values.

In other words, Searching is the process of locating given
value position in a list of values.

Sorting refers to the operation of arranging data in
some given sequence i.e., increasing or decreasing order.
Sorting is categorized as internal sorting and external
sorting. Internal sorting means we are arranging the
elements within the array which is only in computer primary
memory. Whereas the external sorting is the sorting of
elements from the external file by reading it from secondary
memory.

2. SEARCH ALGORITHMS

Algorithm is a sequence of instructions or a set of rules
that are followed to complete a task. In the discussion that
follows, we use the term search term to indicate the item for
which we are searching. We assume the list to search is an
array of integers, although these algorithms will work just as
any other primitive data type (doubles, characters, etc.). We
refer to the array elements as items and the array as a list

2.1 Linear search

Linear Search is one of the basic and simplest search
algorithm and it is also called as Sequential search

algorithm. It is used for unsorted and unordered small list of
elements. In this technique we search for a given key item in
the list in linear order i.e., one after the other. The item to be
search is often called key item. Linear search algorithm finds
given element in a list of elements with O(n) time complexity
where n is the total number of elements in the list.

2.1.1 Implementation of Linear Search

Following are the steps of implementation that we will be
following:

1. Traverse the array using a for loop.

2. In every iteration, compare the key item value
with the current value of the array.

 If the value match, return the current index of
the array.

 If the values do not match, move on to the
next array element.

3. If no match is found, return -1.

2.1.2 Function Code:

int linearSearch(int values[], int keyitem, int n)

{

 for(int i = 0, i < n; i++)

 {

 if(values[i] == keyitem)

 {

 return i;

 }

 }

 return -1;

}

2.1.3 Performance of linear search

When comparing search algorithms, we have to see number
of comparisons required, since we don’t swap any values
while searching. Often, when comparing performance, we
look at three cases:

Best case: the number of comparisons in this case is 1 i.e.,
O(1)

Worst case: it takes N comparisons and is equal to the size
of the array i.e., O(n)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr42018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 295

Average case: On average, the search term will be
somewhere in the middle of the array i.e., O(n).

2.2 Binary search

A binary search is a simple searching technique which can be
applied if the items to be compared are either in ascending
or descending order. The general idea used in binary search
is similar to the way we search for the address of a person in
a address book. Obviously we don’t use linear search.
Instead, we open the book from the middle and the name is
compared with the element at the middle of the book. If the
name is found, the corresponding address is retrieved and
the searching has to be stopped. Otherwise, we search either
the left part of the book or right part of the book. If the name
to be searched is less than the middle element, search
towards left otherwise, search towards right. The procedure
is repeated till Target items is found or Target item is not
found.

Implementation of Binary Search: While designing the
program the low is considered as the position of first
element it is initialized to 0 and high as the position of the
last element it is initialized to n-1, the middle element
position can be obtained using

 mid= (low+high)/2;

The Target Element to be searched is compared with
middle element. If they are equal the position of item in the
array is returned. If the condition is false, the target element
may be present in either left part of the array or in the right
part of the array. If Target element is less than the middle
element then the left part of the array has to be compared
from low to mid-1.Otherwise, the right part of the array has
to be compared from mid+1 to high.

Finally when low exceeds high, it indicates that item not
found in the array.

2.2.1 Function code :

void bsearch(int item. Int a[],int n, int *pos)

 {

 Low=0;

High=n-1;

while(low <= high)

{

 mid = (low+high)/2;

 if(item== a[mid])

 {

 *pos = mid;

 return;

 }

 if(item<a[mid])

 high= mid-1;

 else

 low= mid+1;

}

pos= -1; / Item not Found*/

}

2.2.2 Performance of binary search

Best case: An operation which is done to reach an element
directly i.e., O(1)

Worst case: In this scenario the search term is not in the
array, or search term is the first or last item in the array. i.e.,
O(log n)

Average case: search term is anywhere in the list i.e., O(log
n).

3. Sorting Algorithms

3.1 Insertion sort:

Insertion sort is a very simple method to sort numbers in an
ascending or descending order. This method follows the
incremental method. It can be compared with the technique
how cards are sorted at the time of playing the game.

Here the sub-list is maintained which is always sorted. For
example, the lower part of an array is maintained to be
sorted. An element which is to be inserted in this sorted sub-
list, has to find its appropriate list and then it has to be
inserted there.

Hence the name insertion sorts. This algorithm is not
suitable for large data sets.

3.1.1 Implementation of Insertion Sort:

Following are the steps involved in insertion sort:

1. We start by making the second element of the given
array, i.e. element at index 1, the key.

2. We compare the key element with the element(s)
before it, in this case, element at index 0:

 If the key element is less than the first
element, we insert the key element before
the first element.

 If the key element is greater than the first
element, then we insert it after the first
element.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr42018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 296

3. Then, we make the third element of the array
as key and will compare it with elements to it's left
and insert it at the right position.

4. And we go on repeating this, until the array is
sorted.

3.1.2 Function Code:

void insertion(int a[],int len)

{

 for(int i=1;i<len;i++)

 {

 j=i;

 while(j>0 && a[j-1] > a[j])

 {

 key=a[j];

 a[j]=a[j-1];

 a[j-1]=key;

 j--;

}

 }

}

3.2 Quick sort:

Quick sort is a highly efficient sorting algorithm and
is based on partitioning of array of data into smaller arrays.

Quick sort is a divide and conquer algorithm to gain
same advantages as the merge sort, while not using
additional storage.

3.2.1 Implementation of Quick Sort:

 This sorting technique is well suited for large set of
data. First we partition the given array into two sub-arrays
such that the elements towards left are less than the key
element and elements towards right are greater than key
element.

 To partition the array into two sub-arrays, two
index variables i and j are maintained. The index variable i
points to low+1 where low points to the first element and
the index variable j points to high which points to the last
element. The item a[low] is used as a key element. This key
item has to be placed in a position j such that a[k] <= a[j] for
low <= k < j and a[j] >= a[1] for j + 1 <= 1 <= high. This can be
achieved by comparing the item key with a[i] and a[j]. Keep
incrementing the index i whenever key >= a[i]. Immediately
when this condition fails, keep decrementing the index j
whenever key < a[j]. At this stage if i is less than j, exchange
a[i] with a[j] and repeat the process. If i is greater than or
equal to j then exchange a[low] with a[j] and return j which

gives the position of the partitioned element. Now the
element towards left of a[j] are all less than a[j] and elements
towards right of it are greater.

3.2.2 Algorithm for Quick Sort :

Input : a,n, item,key;

algorithm partition(a, low, high)

{

 key=a[low];

 i = low+1;

 j=high;

 while(1)

 {

 while(i<high && key >= a[i])

 i++;

 while(key < a[j])

 j--;

 if i<j then

 {

 Exchange a[i] and a[j]

 }

 else

 {

 Exchange a[low] and a[j]

 return j;

 }

 }

 }

algorithm quicksort(a, low, high)

 {

 if low < high then

 {

 j=partition(a,low,high);

https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr42018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 297

 quicksort(a,low,j-1);

 quicksort(a,j+1,high);

 }

 }

4. CONCLUSION & FUTURE SCOPE

In this research paper we have studied about different
Searching and sorting algorithms. Every searching and
sorting algorithm has advantage and disadvantage. Some
sorting algorithms have been compared on the basis of
different factors like complexity, number of passes, number
of comparison etc. It is also seen that many algorithms are
problem oriented so we will try to make it global oriented.
Hence we can say that there are many future works which
are as follows.

1) Remove disadvantage of various fundamental sorting
and advance sorting.

2) Make problem oriented sorting to global oriented.

In the end we would like to say that there is huge scope of
the sorting algorithm and searching in the near future, and
to find optimum-sorting algorithm, the work on sorting
algorithm will go on forever.

Each sorting algorithm has its own advantages and
disadvantages. Selection sort O(N2) sorts and quick sort
O(NlogN) sorts.

• The advantage of Selection sort is that the number of swaps
is O(N), and the disadvantage is that it does not stop early if
the list is sorted and it looks at every element in the list in
turn. It is suitable in cases where you need to select max
element in the list. With time complexity same as Bubble
Sort o(n^2), its performance however is better than Bubble
Sort.

• The advantage of Quick sort is that it is the fastest sort and
is O(NlogN) in both the number of comparisons and the
number of swaps and the disadvantage is that the algorithm
is a bit tricky to understand.

5. REFERENCES

[1] Savina & SurmeetKaur, “Study of Sorting Algorithm to
Optimize Search Results”, International Journal of
Emerging Trends & Technology in Computer Science,
Volume 2, Issue 1.

[2] Md. Khairullah, “Enhancing Worst Sorting Algorithms”,
International Journal of Advanced Science and
Technology, Vol. 56

[3] Er. Rahul Kaushal, “Why Sorting is So Important in Data
Structures”, International Journal of Scientific Research
and Development Vol. 5, Issue 07

[4] W. Sarada, Dr. P. V. Kumar, “A Comparative Study and
Analysis of Searching and Sorting algorithms” ,
International Journal of Advanced Research in Computer
Engineering & Technology (IJARCET). Volume 5, Issue 5

[5] Systematic Approach to Data Structures using C- A.M
Padma Reddy

[6] https://www.studytonight.com

[7] http://btechsmartclass.com

