
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3437

Design and Analysis of Bisecting Linear Search for Sorted Array

Rahul Sharma1, Rohit Kumar2

1Dept. of Computer science and Engineering, IIMT Engineering College, Meerut, Uttar Pradesh, India
2Assistant Professor, Dept. of Computer science and Engineering, IIMT Engineering College, Meerut, Uttar Pradesh, India

---***---

Abstract – Searching algorithms are helpful in performing
search operations on the array. There are many search
operations that use different approach and techniques to
search the desired data. Linear search performs search
operation linearly. For large array, linear search takes large
time to search the value if the value is present at the last.
Bisecting linear search is designed for sorted array and works
faster as compared to linear search.

Key Words: array, data structure, linear search, searching,
bisecting linear search.

1. INTRODUCTION

In computer science, a search algorithm is an algorithm that
solves a search problem, namely, to retrieve information
stored within the array or some data structure. Search
algorithms are classified based on the search mechanism
that they use for searching the value. Digital search
algorithms work based on the properties of digits in data
structure that use numerical keys. One of the fundamental
operations that are performed on computer is searching
operation. There are many known searching operations that
can perform searching in different conditions. Web
development, software development, and databases use
searching operations extensively. Search algorithms are
analyzed and evaluated on the basis of their complexity. A
search algorithm should be fast and less complex. Linear
search[1] and Binary search[1,2] are two basic searching
algorithms that are used to perform search operations.
Computer systems often store huge amount of data from
which individual record of data is to be retrieved. Thus the
efficient search algorithm will search the data in less time.
There are searching algorithms which work faster as
compared to other algorithms, but to use those algorithms
there are certain conditions. Binary search works on sorted
array only whereas linear search can work on both sorted as
well as unsorted array. But if the search is to be performed
on the sorted array, linear search performs similar operation
to search the value. Bisecting linear search is a modification
over linear search. Bisecting linear search will work only on
array those are sorted in ascending or descending order. It
concentrates on only one portion of the array, where the
search value may be present, this mechanism makes
Bisecting linear search faster.

1.1 Related Work

Linear search is a sequential search which begins at the
beginning of the list and searches for the value till the end of

the list. If the search value is found it returns the index
position of the search value, if the search value is not found in
the array then it returns -1. The general concept of searching
a value is used by linear search. Linear search works both on
the sorted and unsorted array. The pseudocode of linear
search is given below:

 int searchLinear (int[] array, int value)

 for (i = 0; i < array.length; i++)

 if (array[i] == value)

 return i

 return -1

The linear search pseudocode has a searchLinear method
which takes the array and the search value as a parameter.
The loop iterate from 0 to array.length. Each value of array is
compared with the search value. If any value of array
matches with the search value then it returns the index
position, but if the search value is not found then the method
return -1.

Fig -1: Linear search

Linear search is shown in Fig-1 which is used to search 39
from the given sorted array. Although the array is sorted, it
uses the same technique to search the value, and hence the
time taken by linear search in both sorted and unsorted
array is similar.

1.2 Analysis of Linear search

A linear searching algorithm that searches the specific
item in an array. Search cases of a searching algorithm can
be categorized as best case, average case and worst case. In
some algorithms, all the three cases may be same. In some
algorithms, the cases might have a large difference. In most
of the cases, the average behavior of the algorithm helps in
determining the algorithms usefulness. Linear search

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3438

operates a simple loop to length-1 of the array that goes to
each element until the search value is found. In the worst
case, the loop will iterate from 0 to length -1. Consequently,
worst case time complexity of linear search would be:

f(n) = O(n)

In the best case, the desired search value will be present in

the first position of the array, and hence only one
comparison is made. So the complexity of linear search in the
best case would be:

f(n) = O(1)

2. PROBLEM DEFINITION

While working with the huge data set and array, sometimes
searching is necessary to perform the further operations.
The value which is to be searched from the array may be
present anywhere in the array although the array is sorted,
the sorted sequence cannot be used to increase the search
speed if linear search is used.

3. THE PROPOSED ALGORITHM

To perform the search operation faster on the sorted array, a
new Bisecting linear search algorithm is proposed. In
bisecting linear search algorithm, the middle position of the
array is found. In case of ascending order, if the search value
is less than the middle value then the algorithm performs
linear search from both ends of the left sub array. But if the
search value is greater than the middle value then the
algorithm perform linear search from both ends in the right
sub array. Similarly, in descending order, if the search value
if less than the middle value then the search is performed on
right sub array and so on. The linear search performed by
the algorithm is a special type of linear search, which search
from both the ends. The pseudocode of Bisecting linear
search is given:

 int search(int a[],int n, int val, int mode)

 if (val==a[n/2])

 return n/2

 else if ((val>a[n/2]) && (mode==1))
 //descending order

 i←0
 j← (n/2)-1
 while(i<=j)

 if (a[i]==val)
 return i
 else if (a[j]==val)
 return j
 i++

 j--

 else if ((val<a[n/2]) && (mode==1))
 //descending order

 i←n/2+1
 j←n-1
 while(i<=j)

 if (a[i]==val)
 return i
 else if (a[j]==val)
 return j
 i++
 j--

 else if ((val<a[n/2]) && (mode==0))
 //ascending order

 i←0
 j← (n/2)-1
 while(i<=j)

 if (a[i]==val)
 return i
 else if (a[j]==val)
 return j
 i++
 j--

 else if ((val>a[n/2]) && (mode==0))
 //ascending order

 i←n/2+1
 j←n-1
 while(i<=j)

 if (a[i]==val)
 return i
 else if (a[j]==val)
 return j
 i++
 j--

 return -1

The above pseudocode has a search method which performs
the search operation. It takes an array, size of the array, the
search value, and mode as a parameter. The variable mode
may have either 0 or 1. If the array is ascending then the
value of mode should be 0, but if the array is in descending
order then the value of mode should be 1.

If the search value is equal to the middle value, the algorithm
return n/2. Otherwise, the further operation is performed. If
the search value is greater than the middle value and if the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3439

mode is 1, i iterates from 0 and j iterates from (n/2)-1.
Search value is compared with values of i and j. It returns i or
j, when the condition is fulfilled. The pseudocode has
another else if condition, which executes when the search
value is less than the middle value. Similar operation is
performed for further conditions. The pseudocode return -1
when the search value is not present in the array.

Fig-2 and Fig-3 shows the working of Bisecting linear search
algorithm for both the conditions.

Fig -2: Search value is less than middle value

Fig -3: Search value is greater than middle value

3.1 Analysis of Bisecting linear search

For an array with size n, the best case is when the search
value is the first value of the array. Only one comparison is
performed in the best case. The best case of Bisecting linear
search will be:

f(n) = O(1)

In worst case, the search value is not present in the array. In
bisecting linear search although the size of the array is n, but
the loop will run less than n times. The time complexity of
the algorithm is O(n) because the loop variable i and j
increment by a constant value and the most significant term
of n is taken. The worst case complexity of bisecting linear
search is:

f(n) = O(n)

3.2 Example

Fig – 4 show an example of bisecting linear search.
Random values are sorted and search operation is
performed using bisecting linear search algorithm. The

search value is 33 and array is in ascending order, and hence
mode is 0.

Fig -4: Bisecting linear search example

4. RESULT

The time taken by linear search and bisecting linear search is
calculated on a machine of 64-bit Operating system having
Intel(R) Core(TM) i5 1.60GHz and 8 GB RAM.

Table -1: Time taken by linear search and Bisecting linear

search in worst case

N Linear search

(seconds)

Bisecting Linear search

(seconds)

10000 0.000286 0.00022

20000 0.000576 0.00033

30000 0.000849 0.00046

40000 0.001036 0.00065

50000 0.001309 0.00082

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3440

Chart -1: Performance of Linear search and Bisecting
linear search in the worst case.

4. CONCLUSIONS

Linear search and Bisecting linear search is performed on
the array with sorted data. The data were sorted in
ascending order. Linear search can perform the search
operation on unsorted as well as on sorted array, but
Bisecting linear search is designed for searching the desired
value when the array is sorted in ascending or descending
order. The Table-1 shows the time taken by both the
algorithms to perform the search operation in worst case.
The Chart-1 show the graph plotted by the calculated time.
The loop in Bisecting linear search iterates for very less
number of times as compared to linear search. With the
results, we conclude that Bisecting linear search algorithm
works faster as compared to linear search.

ACKNOWLEDGEMENT

Writing this research paper has been a fun and rewarding
experience for me. My parents encouraged me throughout
the research work. I would thank Mr. Pradip Sharma for
encouraging me so that I can achieve my target. Mr. Rohit
Kumar helped me with his immense knowledge and showed
me the direction that is good and adequate for me.

REFERENCES

[1] Anchala Kumari1, Rama Tripathi2, Mita Pal3 and
 Soubhik Chakraborty, “Linear Search versus Binary
 Search: A statistical comparison for binomial inputs,”
 International Journal of Computer Science, Engineering
 and Applications (IJCSEA) Vol.2, No.2, April 2012.

[2] K. J. Overholt, “Optimal binary search methods,” BIT, vol.
13, no.1, pp. 84-91, 1973.

[3] D. Coppersmith, “Fast evaluation of logarithms in finite
fields of characteristic two,” IEEE Trans. Inform. Theory,
vol. IT-30, pp. 587-594, 1984.

[4] Ancy Oommen, Chanchal Pal, “BINARY SEARCH
ALGORITHM,” IJIRT | Volume 1 Issue 5 | ISSN: 2349-
6002, 2014.

[5] Aho A., Hopcroft J., Ullman J., “The Design and Analysis of
Computer Algorithms,” Addison Wesley, 1974.

BIOGRAPHIES

 Rahul Sharma was born in Jamshedpur,

Jharkhand, India in 1996. He currently
pursuing the B.Tech degree in
computer science and engineering from
IIMT Engineering College, Meerut,
India.

Rohit Kumar was born in Bihar Sharif,
Bihar, India in 1988. He received the
B.Tech in Information Technology from
Dr. MGR University in 2009 and
M.Tech. degrees in Computer Science
from NIT Kurukshetra, Haryana, in
2010.

