
          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                 Volume: 05 Issue: 04 | Apr-2018                     www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 6.171       |       ISO 9001:2008 Certified Journal       |        Page 3618 

 

Customization of text editor: R language support plugin for atom text 
editor 

Dona Mariya Shaju1, Ruby Reetha George2, Shreya Jacob3, Linda Sara Mathew4 

1,2,3 Dept. of Computer Science and Engineering, MACE, Kerala, India 
4 Assistant Professor, Dept. of Computer Science and Engineering, MACE, Kerala, India 

---------------------------------------------------------------------***---------------------------------------------------------------------
Abstract - The paper deals with providing support for R 
language in Atom. Atom is a 21st century text editor that is 
hackable to the core. Atom comes by default with most of the 
features we need to develop a project. Customization in done 
in the form of plugins. Currently, atom doesn’t provide much 
support for R language. R language is an open source 
programming language. R is a very flexible tool for doing 
mathematical and statistical analysis. A support for this 
language will be highly appreciated since R programming is 
used in machine learning, which is getting popular these days. 
A plugin to support R language is proposed to be built, with 
the features like syntax highlighting, code completion, error 
checking and supporting theme. 

Key Words:  Auto-completion, Syntax highlighting, 
Linter, plugin, snippet. 

1. INTRODUCTION 

       Software development involves many different activities, 
and these activities have led to a variety of tools to support 
them. One of the early tools is still widely used today is the 
text editor. Text editors have a very general interface and 
provide primitive but general support for creating programs 
in traditional textual programming languages. The general 
research interest is in code reuse, and text editors provide 
support for reuse through mechanisms for textual cut-and 
paste. This support is very primitive, but it is heavily relied 
on by programmers to reuse old code and adapt it to new 
circumstances. This project deals with auto-completion, 
syntax highlighting and error checking for R language for 
atom text editor.  

       These efforts can lead to improved text editors. Text 
editing is an important user interface element, and editors 
are important because users spend significant time and 
effort working within them, even in single sessions. 
Understanding and improving text editors is therefore a 
worthwhile objective. Beyond editors, the aim is to better 
understand how programming languages and programs 
should support re-usability. 

      R is the most comprehensive statistical analysis package 
available. It incorporates all of the standard statistical tests, 
models, and analyses, as well as providing a comprehensive 
language for managing and manipulating data. New 
technology and ideas often appear first in R. R is a 
programming language and environment developed for 
statistical analysis by practicing statisticians and 
researchers. 

      Atom is a free and open-source text and source code 
editor for macOS, Linux, and Microsoft Windows with 
support for plug-ins written in Node.js, and embedded Git 
Control, developed by GitHub. It can also be used as an 
integrated development environment (IDE). Plugins are 
those features which make the text editors so special. These 
plugins add additional features to the existing editor. In 
short, we have full control over what the editor looks like 
and how it works. We can truly make it our own. That’s the 
reason why its makers stress that Atom is “hackable”. 

1.1 Features Implemented 

       Autocompletion: Autocomplete, or word completion, is a 
feature in which an application predicts the rest of a word a 
user is typing. Autocomplete speeds up human-computer 
interactions when it correctly predicts the word a user 
intends to enter after only a few characters have been typed 
into a text input field. It works best in domains with a limited 
number of possible words (such as in command line 
interpreters), when some words are much more common 
(such as when addressing an e-mail) or writing structured 
and predictable text (as in source code editors). 

       Syntax-Highlighting: Syntax highlighting is a feature of 
text editors that are used for programming, scripting, or 
markup languages, such as HTML. The feature displays text, 
especially source code, in different colors and fonts 
according to the category of terms. This feature facilitates 
writing in a structured language such as a programming 
language or a markup language as both structures and 
syntax errors are visually distinct. Highlighting does not 
affect the meaning of the text itself; it is intended only for 
human readers. 

      Error-correction: Error correction mechanism helps in 
detecting the syntax rules and helps the programmer correct 
it. This increases the throughput. Brace matching, also 
known as bracket matching or parentheses matching, is also 
a feature of certain text editors and integrated development 
environments.  

2. METHODOLOGY 

2.1 Autocompletion 

      Snippets are an incredibly powerful way to quickly 
generate commonly needed code syntax from a shortcut. 

The basic snippet format is as follows: 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                 Volume: 05 Issue: 04 | Apr-2018                     www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 6.171       |       ISO 9001:2008 Certified Journal       |        Page 3619 

 

‘source.js’: ‘console.log’ 

‘prefix’: ‘log’ 

‘body’: ‘console.log (${1:” crash”}); $2’ 

1. Load the snippets.cson from ~/.atom by selecting the  
Atom > Snippets menu. 

2. Look for the “Scope” string. 

3. Use $ followed by a number to mark a tab stop. 

The leftmost keys are the selectors where these snippets 
should be active. The top-level snippet key is prepended by a 
period. 

The next level of keys are the snippet names. These are used 
for describing the snippet in a more readable way in the 
snippet menu.  

Under each snippet name is a prefix that should trigger the 
snippet and a body to insert when the snippet is triggered. 

The above example adds a log snippet that would expand to: 
console.log(“crash”); 

The string "crash" would be initially selected and pressing 
tab again would place the cursor after the; 

2.2 Syntax Highlighting 

Atom has to identify the language. This can be achieved by 
the three entries in the newly created CSON file: 

'fileTypes': [ 'R', 'r'] 

'name': 'R' 

'scopeName': 'source.r' 

1. Create a subfolder named grammars to add new syntax 
rules. 

2. Create a new CSON file named after the language to    
support, which is going to include all syntax highlighting 
rules. 

3. Type in similar rules as below: 

Syntax Rules 

       All the rules for the language was declared in a fourth 
entry: patterns. Any added rule was declared between {} in 
the patterns array: 

'patterns': [     

 {         # First rule     },     

 {         # Second rule     },     

 # …      

{         # Last rule     }  

] 

Matching a Syntax Element   

{ 

    'match': '\\b((0(x|X)[0-9a-fA-F]*)|(([0-9]+\\.?[0-
9]*)|(\\.[0-9]+))((e|E)(\\+|-)?[0-
9]+)?)(i|L|l|UL|ul|u|U|F|f|ll|LL|ull|ULL)?\\b' 

    'name': 'constant.numeric.r' 

} 

      This rule detects any valid number. The match entry is 
filled with a valid regex. Then, each time Atom sees text 
matching this regex, it will encapsulate it in a span element 
with the class names indicated in name.  

4. Several class names are added, each one separated by a 
dot. Any class name can be added in the name entry. There 
are some conventions to follow. Generally, the type of 
element you want to highlight is indicated and finished with 
the name of the language. 

5. Match the beginning and end of a rule. 

       Sometimes it’s easier to detect the beginning and the end 
of an element than the element itself. It’s true for strings, for 
instance: 

  { 

    'begin': '\'' 

    'beginCaptures': 

      '0': 

        'name': 'punctuation.definition.string.begin.r' 

    'end': '\'' 

    'endCaptures': 

      '0': 

        'name': 'punctuation.definition.string.end.r' 

    'name': 'string.quoted.single.r' 

    'patterns': [ 

      { 

        'match': '\\\\.' 

        'name': 'constant.character.escape.r' 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                 Volume: 05 Issue: 04 | Apr-2018                     www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 6.171       |       ISO 9001:2008 Certified Journal       |        Page 3620 

 

      } 

    ] 

  } 

With this rule, Atom will search for a first quote to begin the 
string. Then, the next quote it finds will be the end of the 
string, as expected (the search is ungreedy).  

6. Indicate all the regexes you want as begin and end 
delimiters.  As always, the name entry must be filled with the 
class names you want for the whole retrieved element. 

2.3 Error correction 

      A linter or lint refers to tools that analyze source code to 
flag programming errors, bugs, stylistic errors, and 
suspicious constructs. The term is originated from 
a Unix utility that examined C language source code. 

Linter works while you’re typing and checks if there are any 
syntax errors. If one forgets to put semicolon at the end of a 
line, linter will immediately show the error. It will save a lot 
of time. Not only that, it will force to write code more 
carefully. 

The steps for creating linter in atom are as follows. 

1. Bring up the Command Palette and type plugin. 
Among the commands select create new plugin.  

2. Then an appropriate name is chosen. 

3. Select the language for which linter is being created 

4. The plugin directory will be opened in atom. It can 
be now modified according to the needs. 

2.4 Theme customization 

1. Firstly, Cmd+Shift+P is pressed and "Generate 
Syntax Theme" is typed to generate new theme 
package. Select "Generate Syntax Theme," and the 
path where the theme will be created is specified. 

2. styles/colors.less is opened to change the various 
color variables which have already been defined. 
For example, turn @red into #f4c2c1. 

3. styles/base.less is opened to modify the various 
selectors that have already been defined. These 
selectors style different parts of code in the editor 
such as comments, strings and the line numbers in 
the gutter. 

4. Reload Atom by pressing  Alt+Cmd+Ctrl+L to see 
the changes made reflected in the Atom window.  

 

 

3. CONCLUSION 

      The text editor was customized to our needs. The theme 
was customized and other features were added. This 
customization can be extended to other programming 
languages as well. 

 

Fig -1: The customized Text Editor 

REFERENCES 

[1] A. A. Khwaja and J. E. Urban. Syntax-directed editing 
environments: Issues and features. In E. Deaton, K. M. 
George, H. Berghel, and G. Hedrick, editors, Proceedings 
of the ACMISIGAPP Symposium on Applied Computing, 
pages 230-237, Indianapolis, IN, Feb. 1993. ACM Press. 

[2] V. Donzeau-Gouge et al., "A Structure-Oriented Program 
Editor: a First Step Towards Computer-Assisted 
Programming," Proc. of Int. Computing Symp., An- tibes, 
June 1975. 

[3] M. E. Lesk, "Lex-A Lexical Analyzer Generator," 
Computer Science Technical Report '39, Bell 
Laboratories, Murray Hill, 1975. 

[4] From homepage of http://flight-manual.atom.io/using-
atom/sections/snippets/ 

[5] From homepage of http://www.sitepoint.com/how-to-
write-a-syntax-highlighting-package-for-atom/ 

 

 

 

 

https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/List_of_utility_software
https://en.wikipedia.org/wiki/C_(programming_language)
http://docs.sublimetext.info/en/sublime-text-3/extensibility/command_palette.html
http://flight-manual.atom.io/using-atom/sections/snippets/
http://flight-manual.atom.io/using-atom/sections/snippets/
http://www.sitepoint.com/how-to-write-a-syntax-highlighting-package-for-atom/
http://www.sitepoint.com/how-to-write-a-syntax-highlighting-package-for-atom/

