

Maintaining Drinking Water Health with Continous Detection

Praveen Kumar Maddhesiya¹, Amit Pratap Singh²

^{1,2} Department of Electrical & Electronics, Pranveer Singh Institute of Technology, Kanpur

ABSTRACT - The traditional method of testing Turbidity, PH & Temperature is to collect samples manually and then send them to laboratory for analysis. However, it has been unable to meet the demands of water quality monitoring today. So a set of Monitoring of Turbidity, PH & Temperature of Water quality has been developed. The system consists of Turbidity, PH & Temperature sensor of water quality testing, single-chip microcontroller data acquisition module, information transmission module, monitoring center and other accessories. Turbidity, PH & Temperature of water are automatically detected under the control of single chip microcontroller all day. The single chip gets the data, and then processes and analyzes them. After that, the data are instantaneously sent to monitoring center by GSM network in the form of SMS. If the water quality is abnormal, the data will be sent to monitoring center and management's mobile in the same way at the same time. It is convenient for management to take corresponding measures timely and be able to detect real-time situation of water quality remotely. The system has realized the automation of water quality monitoring intelligence of data analyzing and networking of information transferring. It is characterized by advantages of shortcut, accuracy and using manpower and material resources sparingly.

Index Terms—Turbidity, PH, Temperature, Zigbee, GPRS, GSM, WSN

1. INTRODUCTION

With the rapid development of the economy, more and more serious problems of environment arise. Water pollution is one of these problems. Routinely monitored parameters of water quality are temperature, pH, turbidity, conductivity, dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD), ammonia nitrogen, nitrate, nitrite, phosphate, various metal ions and so on. The most common method to detect these parameters is to collect samples manually and then send them to laboratory for detecting and analyzing. This method wastes too much man power and material resource, and has the limitations of the samples collecting, long-time analyzing, the aging of experiment equipment and other issues. Sensor is an ideal detecting device to solve these problems. It can convert no power information into electrical signals. It can easily transfer process, transform and control signals, and has

many special advantages such as good selectivity, high sensitivity, and fast response speed and so on. According to these characteristics and advantages of sensors, Monitoring of Turbidity, PH & Temperature of Water is designed and developed. It bases on SMS (Short Messaging Service) in the GSM (Global System for Mobile Communications) network to instantaneously transfer the collected data. It also can remotely monitor the water quality on line. The system implements automation, intelligence and network of water quality monitoring, and uses manpower, material and financial resources sparingly.

2. TURBIDITY SENSOR

Turbidity is a measure of the cloudiness of water. Cloudiness is caused by suspended solids (mainly soil particles) and plankton (microscopic plants and animals) that are suspended in the water column. Moderately low levels of turbidity may indicate a healthy, well-functioning ecosystem, with moderate amounts of plankton present to fuel the fuel the food chain. However, higher levels of turbidity pose several problems for stream systems. Turbidity blocks out the light needed by submerged aquatic vegetation. It also can raise surface water temperatures above normal because suspended particles near the surface facilitate the absorption of heat from sunlight.

Fig. 1 Turbidity Sensor

4. TEMPERATURE SENSOR MODULE

Water Temperature is a controlling factor for aquatic life: it controls the rate of metabolic activities, reproductive activities and therefore, life cycles. If stream temperatures increase, decrease or fluctuate too widely, metabolic activities may speed up, slow down, malfunction, or stop all to get. There are many factors that can influence the stream temperature. Water temperatures can fluctuate seasonally, daily, and even hourly, especially in smaller sized streams. Spring discharges and overhanging canopy of stream vegetation provides shade and helps buffer the effects of temperature changes. acid or base has increased or decreased tenfold. Streams generally have a pH values ranging between 6 and 9, depending upon the presence of dissolved substances that come from bedrock, soils and other materials in the watershed.

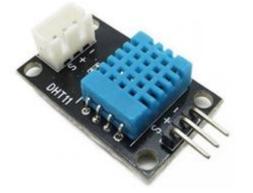


Fig. 2 Temperature Sensor Picture From Google images

4.1 Application

1. Temperature control of bearings,

2. Conductor-rails, machine parts and windings.

4.2 General function

The DHT-11 sensor is a temperature dependent component. The resistance of the DHT-11 sensor rises linearly with the temperature.

4.3 Advantages

1. Very precise measuring: measuring temperature ±0.5°C.

2. Precise linear temperature-resistance characteristic.

3. Low weight.

5. PH SENSOR

PH is an important limiting chemical factor for aquatic life. If the water in a stream is too acidic or basic, the H+ or OH- ion activity may disrupt aquatic organism's biochemical reactions by either harming or killing the stream organisms. pH is expressed in a scale with ranges from 1 to 14.

A solution with a pH less than 7 has more H+ activity than OH-, and is considered acidic. A solution with a pH value greater than 7 has more OH- activity than H+, and is considered basic. The pH scale is logarithmic, meaning that as you go up and down the scale, the values change in factors of ten. A one-point pH change indicates the strength of the

Fig. 3 pH Sensor Picture From Google images

Combination of Electrodes for pH measurements Fitted with coaxial cable and BNC (Bayonet Neill-Concelman) type SL-31 connector. The combined Electrode consists of glass and reference electrodes in a single entity. Therefore a separate, reference electrode need not be used along with this electrode. Below the cap of the electrode a hole is provided for filling the solution in the internal reference electrode. The reference electrolyte solution or filling solution is a freshly prepared 2 M Potassium Chloride (KCl) Solution.

6. BLOACK DIAGRAM

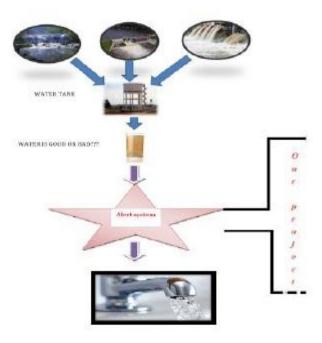


Fig. 4.Flow Chart of Water Distribution

The flow is given above -

- 1. Water Sources
- 2. Water Tank
- 3. Alert System
- 4. Ditstribution of Water

6.1 Water Sources

Water is water in a river, lake or fresh water wetland. Surface water is naturally replenished by precipitation and naturally lost through discharge to the oceans, evaporation, evapotranspiration and sub-surface seepage. Although the only natural input to any surface water system is precipitation within its watershed, the total quantity of water in that system at any given time is also dependent on many other factors. These factors include storage capacity in lakes, wetlands and artificial reservoirs, the permeability of the soil beneath these storage bodies, the runoff characteristics of the land in the watershed, the timing of the precipitation and local evaporation rates. All of these factors also affect the proportions of water loss. Human activities can have a large and sometimes devastating impact on these factors. Humans often increase storage capacity by constructing reservoirs and decrease it by draining wetlands. Humans often increase runoff quantities and velocities by paving areas and Channelizing stream flow.

SOURCES -

- 1) Under river flow
- 2) Ground water
- 3) Desalination

6.2 Water Tank

A water tank is a container for storing water. The need for a water tank is as old as civilization, providing storage of water for drinking water, irrigation agriculture, fire suppression, agricultural farming, both for plants and livestock, chemical manufacturing, food Preparation as well as many other applications. Water tank parameters include the general design of the tank, and choice of construction materials. Various materials are used for making a water tank: plastics (polyethylene, polypropylene), fiberglass, concrete, and stone, steel (welded or bolted, carbon, or stainless), Earthen ponds function as water storage.

1. Chemical contact tank of FDA and NSF polyethylene construction, allows for retention time for chemical treatment chemicals to "contact" (chemically treat) with product water. The tank is used in Rajasthan as a traditional form of rainwater harvesting

2. Ground water tank is made of lined carbon steel, it may receive water from a water well or from surface water allowing a large volume of water to be placed in inventory and used during peak demand cycles.

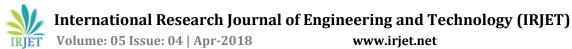
3. Elevated Water Tank is also known as a water tower, an elevated water tower will create pressure at the ground-level outlet of 1 psi per 2.31 feet of elevation, thus a tank elevated to 70 feet creates about 30 psi of discharge pressure. 30 psi is sufficient for most domestic and industrial requirements.

6.3 Alert System

Alert system of our project "Monitoring of Turbidity, PH & Temperature of Water ". in which a single controller can interface with water quality parameter sensor which continuously measures the value of parameters and if the values are beyond the limit then it will send the message on the mobile of management body of water supply that water is not good for drinking. Then the authority will take respective action for purify the water and then distribute to their customers.

7. FUTURE SCOPE

1. To give information to whole users those are depends on that plant.


2. Detecting the more parameters for most secure purpose

3. Increase the parameters by addition of multiple sensors

4. By interfacing relay we controls the supply of water.

8. CONCLUSION

Monitoring of Turbidity, PH & Temperature of Water makes use of water detection sensor with unique advantage and existing GSM network. The system can monitor water quality automatically, and it is low in cost and does not require people on duty. So the water quality testing is likely to be more economical, convenient and fast. The system has good flexibility. Only by replacing the corresponding sensors and changing the relevant software programs, this system can be used to monitor other water quality parameters. The operation is simple. The system can be expanded to monitor hydrologic, air pollution, industrial and agricultural production and so on. It has widespread application and extension value.

www.irjet.net

9. REFERENCES

[1]. Mo Deqing, Zhao Ying, Chen Shangsong, "Automatic Measurement and Reporting System of Water Quality Based on GSM," 2012 International Conference on Intelligent System Design and Engineering Application.

[2] .Svetomir Mijović1, Bojan Palmar2 1Serbian Environmental Protection Agency, Belgrade, Republic of Serbia 2State Hydro meteorological Service of Serbia, Belgrade, Republic of Serbia.

[3]. Automated Water Quality Monitoring, Field Manual (1999), Ministry of Environment Lands, and Parks, Water Management Branch for the Aquatic Inventory Task Force Resources Inventory Committee, The Province of British Columbia, and Canada.

[4]. Mijović S. and Palmar B. (2009). "Continuous water quality monitoring on river Kolubara" ,30th scientificprofessional meeting with international participation.

[5]. Muhammed ali Mazdi & Janice Gillispie "8051 Microcontroller & embedded system" 3rd edition pearson.

[6]. Prof.Sachin S. patil , Prof.S.J.Patil, Prof.M.M.Raste "AIR POLUTANT MONITRING USING SENSOR NETWORKS" International Journal of Advanced in Electronics Research and Communication Engineering, Volume.3.Issue.8.,.Aug-2014,pp..829.