
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 961

Secure External Login Based on Authorization Code Flow using JWT

Dr. R. Kannan1, G. Umasankar2

1 Associate Professor, Department of Computer Science, Sri Ramakrishna Mission Vidyalaya College of Arts and
Science, Coimbatore-20

2M.Phil. Scholar, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-20
---***---
Abstract - Now a day’s everyone use web and cloud based
application using everywhere. It’s given a quick solution and
time consumption and communication for the users. In this
place authentication and authorization have been a part of
communication. It’s based on the Identity. What is Identity
means who is the user. Now a days we are widely using Single
Sign.. In this SSO has ability for one application, known as an
identity provider, to tell other applications, known as service
providers, who you are? In this context, identity providers are
systems that contain digital identity information about users.

This communication based HTTP Protocol. That base given a
token based authenticate and authorize to Resource server.
We can saw the flows and implementation external
authentication. And important of JWT.

Key Words: Authentication, Authorization, Single-Sign-
On, OAuth, JWT.

1. INTRODUCTION

Web applications have become an essential component of
business in today's world. In this place Security is very
important. These applications can help target numerous
client and customers at a time. And now its targets web and
cloud based applications and multiple types of devices also,
that time security is most important. Now we are using JWT
(JSON WEB TOKEN) for Authentication purpose.

Is a JSON-based open standard (RFC 7519) for
creating access tokens that assert some number of claims
The tokens are designed to be compact, URL-safe and usable
especially in web browser single sign-on (SSO) context.

Authentication is the process of verifying the users using
credentials. In this process for create a user identity for the
server and client. In this user identity has contains the roles
and permissions.

In the authorization process its check the user identity
based to control access rights by granting or denying specific
permission to an authenticated user.

External authentication uses the Central Authentication
Service (CAS), which enables Single Sign-On (SSO), and
allows a user to authenticate with a CAS. External
Authentication is commonly used away for Internet users to
grant websites or web applications access to their
information on other websites but without given them the
passwords.

In now days external authentication using OAuth2 (Open
Authentication). It’s specifies a process for resource owner
to authorize third-party access to their server resource
without sharing their credentials.in the place we can saw the
External Authentication and JSON WEB TOKEN Security. We
can saw authorization code flow for identify the users.

2. SIGNLE SIGN ON

In this world all the things in web and cloud based. In this
time users can’t memory all the passwords. In this situation. We
can use the Single sign on concept. It’s used authenticate the user
without user credentials on the resource server.

In this application identify the users using external server. Its
common directory service for the enterprise applications either
a social login’s. That give the access token that based identity the
user in server. These token based access other protected
resources without having to re-authenticate.

In Enterprises applications are using active directory or IAM
(Identity and Access Management) service for authenticate to
the user. It verify and given the access permission their
resources. If authentication succeed, it will establish a
relationship of trust that grant user the access to all web
resources for which he/she have permissions.

Wed-based SSO is a widely deployed single sign-on
technology sometimes also called web access management.
In this trend commonly used external authentication for social
network login’s like Google, Facebook, Microsoft Outlook,
twitter and etc.,

3. OAUTH (OPEN AUTHENTICATION)

OAuth is an open standard for access delegation,
commonly used as a way for Internet users to grant websites
or applications access to their information on other websites
but without giving them the passwords. The latest iteration
of OAuth, formalized in 2012, is the version 2.0.

As one can imagine, it is much more accommodating to
current trends and needs in the industry, OAuth includes the
notion of Access Token as the mechanism of choice for
allowing access to restricted resources. In other words, an
Access Token is the authorization issued to a client

In an OAuth has four type generating access token. In this
place we can saw the server to server communication based
authorization code grant flow.

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Open_standard
https://tools.ietf.org/html/rfc7519
https://en.wikipedia.org/wiki/Access_token
https://en.wikipedia.org/wiki/Session_token
https://en.wikipedia.org/wiki/URL
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Single_sign-on
https://en.wikipedia.org/wiki/Open_standard

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 962

3.1. OAUTH SERVER AND CLIENT CONFIGUATION

OAuth is an authentication and authorization protocol
that is widely used on the Internet. It’s based on client server
communication model. In authorization code flow required
client information for the authorization server.

Before using OAuth with your application, you must
register your application with the OAuth service provider.
This is done through a registration form in the "developer"
or "API" portion of the service's website, where you will
provide the following information (and probably details
about your application)

 Application Name

 Application Website

 Redirect URI or Callback URL

The redirect URI is where the service will redirect the user
after they authorize (or deny) your application, and
therefore the part of your application that will handle
authorization codes or access tokens.

3.2 Client ID and Client Secret

 Once your application is registered, the service will issue
"client credentials" in the form of a client identifier and
a client secret. The Client ID is a publicly exposed string that
is used by the service API to identify the application, and is
also used to build authorization URLs that are presented to
users.

The Client Secret is used to authenticate the identity of the
application to the service API when the application requests
to access a user's account, and must be kept private between
the application and the API.

3.3 OAUTH 2.0 Roles

OAuth defines the four roles.

1. Resource owner

Resource owner is the Person it is referred to the end
user.

2. Resource server

The server hosting the protected resources, capable of
accepting and responding to protected resource
requests using access token

3. Client

An Application making protected resource request on
behalf of the resource owner and with is
authorization.

4. Authorization server

The server issuing access token to the client after
successfully authenticating the resource owner and
obtaining authorization.

3.4 OAUTH COMMUNCIATION PROCESS

 The authorization code grant type is the most
commonly used because it is optimized for server-side
applications, where source code is not publicly exposed,
and Client Secret confidentiality can be maintained. This is a
redirection-based flow, which means that the application
must be capable of interacting with the user-agent (i.e. the
user's web browser) and receiving API authorization codes
that are routed through the user-agent.

In my analysis OAuth has three stages. The first stage is the
user is requested to the External Login in our application
server or resource server. In this server has redirect to the
authorization server (or) External Server.

In this redirection contains some query string in a URL
part. This is important for authentication for external server.
Because that based only identify which client is request for
the user information. If the client id and redirect URL.
Doesn’t match it’s say it’s not valid client. This client is not
registered is our system.

In an Authorization server find the client. And in that client
is valid then only it’s redirected to the Login Page. In that
Login Page is used for the End User (or) Resource owner
Pass the Credentials. If the credentials is valid the server set
the cookie in response to the user agent. And the same time
it’s redirected to the user browser for next stage.

In a second stage that redirect URL pass to resource server
that server has taken the information using the query string.
In that query string contains the authorization code.

In this Authorization code has Contains the user
information and the client information. That code generation
is authorization server logic. That authorization code has
some validity and it’s verify for subsequent request in
authorization server. In this authorization code validate

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 963

from the client application and firewall and redirect URL
based on OAuth Server configuration of Client Application

In the authorization code is very important for identity the
client and the user for the external authorization server. In
the code based perform the post action from the resource
server to the external or authorization server. That
communication required for the client information like client
id, secret, redirect URL and authorization code.

In the External Authorization server check the client
information and request domain and firewall and redirect
url based it’s valid then check the code it’s given by this
authorization server or not. If code also valid then its fetch
the user information and user scopes and permissions and
it’s generate the JWT. And its token encoded the Base64
format. That token send to the resource server.

In the Response is the third stage of the Process. In the
token is decoded and get the JWT. That JWT claims based
identify the system user whether it’s a new user or existing
user that based fetch the user that based generate the new
access token for resource server.

 In this new Access token has contains the user identity for
perform the subsequent request in the resource server
access for the protected resource. That based perform the
authorization and secure communication.

Using Social Login IDP’s (Identity Provider) JWT contain
the identity provider user id claim that based getting the
user from the local database based on internal user mapping
and generate the new access token for the local issuer. Either
Enterprise Application are using the common IAM (Identity
and Access Management) issuer.

In Our Application is user Social Login’s Like Google Plus,
Facebook, etc., we can identity the user using External
Authentication and we generate a new access token. For our
domain based issue the new access token. Otherwise, we
using Enterprise Login like Azure Active Directory or
something like we using that IDP provider given token for
our application. In our application either using cookie or
token based send the response for authorize to sub sequent
requests.

Authorization Code Flow Diagram:

4. JSON WEB TOKEN

JWTs are an encoded representation of a JSON object. The
JSON object consists of zero or more name/value pairs, where
the names are strings and the values are arbitrary JSON
values. JWT is useful to send such information in the clear (for
example in an URL) while it can still be trusted to be
unreadable (i.e. encrypted), unmodifiable (i.e. signed) and url-
safe (i.e. Base64 encoded).

4.1 JSON WEB TOKEN STRUCTURE

The Encode JWT format contain the Header, Payload and
Signature these three part separated with (.) for example:
Header (.) Payload (.) Signature.

1. Header: The first part of a JWT is an encoded string
representation of a simple JavaScript object which
describes the token along with the hashing algorithm
used.

2. Payload: The second part of the JWT forms the core of
the token. Payload length is proportional to the amount
of data you store in the JWT. General rule of thumb is:
store the bare minimum in the JWT.

3. Signature: The third, and final, part of the JWT is a
signature generated based on the header (part one)
and the body (part two) and will be used to verify that
the JWT is valid.

 The payload of a JSON Web Signature (JWS) structure or as
the plaintext of a JSON Web Encryption (JWE) structure,
enabling the claims to be digitally signed or integrity
protected with a Message Authentication Code (MAC) and/or
encrypted.

JWTs can have different usages: authentication mechanism,
url-safe encoding, securely sharing private data, interoperability,
data expiration, etc. Regardless of how you will use your JWT,
the mechanisms to construct and verify it are the same.

`Sample JWT Encode Format is
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJPbmxp
bmUgSldUIEJ1aWxkZXIiLCJpYXQiOjE1MjM3MDk5MTAsIm
V4cCI6MTU1NTI0NTkxMCwiYXVkIjoid3d3LmV4YW1wbGU
uY29tIiwic3ViIjoianJvY2tldEBleGFtcGxlLmNvbSIsIkdpdmV
uTmFtZSI6IkpvaG5ueSIsIlN1cm5hbWUiOiJSb2NrZXQiLCJF
bWFpbCI6Impyb2NrZXRAZXhhbXBsZS5jb20iLCJSb2xlIjpbI
k1hbmFnZXIiLCJQcm9qZWN0IEFkbWluaXN0cmF0b3IiXX0.
xSnUao6u6YHIKPDKjl9ZoSyTy6vYJXsq0iXyXTvu8A

Sample JWT Decoded format is

{

 typ: "JWT", //Header part

 alg: "HS256"

}.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 964

{ //Payload part

 iss: "menporul",

 iat: 1523942501,

 exp: 1555478501,

 aud: "www.menporul.in",

 sub: "jwt-token",

 GivenName: "Umasankar",

 Surname: "Govindaraj",

 Email: "umasankar@menporul.in",

 Role: [

 "Admin",

 "Customer"

]

}.

[signature] // signature part

What are the benefits of using a token-based approach?
[4]

 Cross-domain / CORS: cookies + CORS don't play
well across different domains. A token-based approach
allows you to make AJAX calls to any server, on any
domain because you use an HTTP header to transmit
the user information.

 Stateless (a.k.a. Server side scalability): there is
no need to keep a session store, the token is a self-
contained entity that conveys all the user information.
The rest of the state lives in cookies or local storage on
the client side.

 CDN: you can serve all the assets of your app from a
CDN (e.g. JavaScript, HTML, images, etc.), and your
server side is just the API.

 Decoupling: you are not tied to any particular
authentication scheme. The token might be generated
anywhere, hence your API can be called from anywhere
with a single way of authenticating those calls.

 Mobile ready: when you start working on a native
platform (iOS, Android, Windows 8, etc.) cookies are
not ideal when consuming a token-based approach
simplifies this a lot.

 CSRF: since you are not relying on cookies, you
don't need to protect against cross site requests (e.g. it
would not be possible to sib your site, generate a POST
request and re-use the existing authentication cookie
because there will be none).

 Performance: we are not presenting any hard
performance benchmarks here, but a network
roundtrip (e.g. finding a session on database) is likely
to take more time than calculating an HMACSHA256 to
validate a token and parsing its contents.

4.2 HOW TO AUTHORIZE USING JWT

In a JWT Authorization Process is suitable for web and
mobile and other device based application. In JWT Encoded
access token client storage like Local Storage in Browser and
any Variables. In the JWT token in passed all the request of
the resource server in request header.

This header name is Authorization. In this Header we
passed the value for Bearer {Access Token} this format
based pass the token in resource Server. In this Server
validate the token.

The Token based get the User and Claims in
authorization server for access the protected resource. If
expired or any malfunction it’s detected in this token its
throw the error in response.

5. RELATED WORK

I was Analyze the OAuth Server and Client Process and
implemented the Social Login Google, Facebook, and Azure
Active Directory for Enterprise Common Login.

I was written the custom OAuth server using OWIN
Middleware in ASP.Net Web API Application Angular JS1. In
this server based access the API server on various clients on
Web, and Android and IOS Application. It’s Working
Perfectly. And JWT Token Handle in web and Mobile for the
storage and if expired we using he refresh token Technology
in Application.

These Implementation and Analysis based I getting
knowledge for how to work implement the OAuth Server and
Client and Communicate securely for the client and server
using JWT.

6. CONCLUSION

 In this paper can we saw the authentication,
authorization single sign-on external authentication server
to server communication, client server communication
(Authorization Code flow) and JSON WEB Token and its
process and advantages and how to implement the JWT in
our web and mobile based application.

OAuth2 is a security framework. It’s a details ways of
authenticating multiple types of applications in various
different scenarios. Because of this there is a lot of material
to learn. This is not a fast process. JWT on the other hand is
relatively light on conceptual understanding. After a day of
reading the specs I felt comfortable starting an
implementation.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 965

In many situations it is convenient to let user’s
authenticate using a pre-existing account they have on other
larger websites.

If you expect your users to be using an OAuth provider
like Facebook or Gmail, OAuth2 can be a pretty fast and pain
free way of adding authentication, by using an existing
library.

In this work we can cover the External Authentication
based on the JWT and OAuth 2.0 Server side process. And we
know how to work on OAUTH 2.0 Authorization flow and
JWT based Security implementation.

I was gathered what is JWT? How to add the custom
claims? And how to maintain the token, how to decode and
extract the claim and authorize the user and that based
access the protected resource. If expire how to generate the
new token use refresh token technology. That knowledge
based on writing this paper.

REFERENCE

[1] https://ac.els-cdn.com/S1877050913009423/1-s2.0-
S1877050913009423-main.pdf?_tid=678fb538-c968-
4f09-86a1-
11cdc4b34948&acdnat=1522582485_c62edef04c38c72
4f52a976df6928249

[2] https://en.wikipedia.org/wiki/OAuth

[3] https:/yourstory.com/2015/07/web-application

[4] https://stackoverflow.com/questions/1592534 /what-
is-token-based-authentication

[5] https://docs.microsoft.com/en-us/aspnet/web-
api/overview/security/external-authentication-services

[6] http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.403.5661&rep=rep1&type=pdf

[7] https://www.digitalocean.com/community/tutorials/a
n-introduction-to-oauth-2

[8] http://bitoftech.net/2014/06/01/token-based-
authentication-asp-net-web-api-2-owin-asp-net-
identity/

[9] http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.403.5661&rep=rep1&type=pdf

[10] http://www.seedbox.com/en/blog/2015/06/05/oauth-
2-vs-json-web-tokens-comment-securiser-un-api/

BIOGRAPHIES

Dr. R. Kannan. MCA, M. Phil.,
Associate Professor, Department of
Computer Science. Sri
Ramakrishna Mission Vidyalaya
College Of Arts and Science,
Coimbatore, TamilNadu

G. Umasankar, He was complete
MCA and currently studying in
M. Phil., in Sri Ramashina Mission
Vidyalaya College of Arts and
Science. Coimbatore. TamilNadu

https://ac.els-cdn.com/S1877050913009423/1-s2.0-S1877050913009423-main.pdf?_tid=678fb538-c968-4f09-86a1-11cdc4b34948&acdnat=1522582485_c62edef04c38c724f52a976df6928249%20
https://ac.els-cdn.com/S1877050913009423/1-s2.0-S1877050913009423-main.pdf?_tid=678fb538-c968-4f09-86a1-11cdc4b34948&acdnat=1522582485_c62edef04c38c724f52a976df6928249%20
https://ac.els-cdn.com/S1877050913009423/1-s2.0-S1877050913009423-main.pdf?_tid=678fb538-c968-4f09-86a1-11cdc4b34948&acdnat=1522582485_c62edef04c38c724f52a976df6928249%20
https://ac.els-cdn.com/S1877050913009423/1-s2.0-S1877050913009423-main.pdf?_tid=678fb538-c968-4f09-86a1-11cdc4b34948&acdnat=1522582485_c62edef04c38c724f52a976df6928249%20
https://ac.els-cdn.com/S1877050913009423/1-s2.0-S1877050913009423-main.pdf?_tid=678fb538-c968-4f09-86a1-11cdc4b34948&acdnat=1522582485_c62edef04c38c724f52a976df6928249%20
https://en.wikipedia.org/wiki/OAuth
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/external-authentication-services
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/external-authentication-services
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.403.5661&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.403.5661&rep=rep1&type=pdf
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.403.5661&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.403.5661&rep=rep1&type=pdf

