

SYSTEM STUDY TO INCREASE THE OVERALL DISPATCH FROM ROLLING MILL

Aman Raj Sinha¹, Smriti Shourya²

^{1,2} Student, M.Tech Industrial Engineering & Management, Department of Management Studies, IIT (ISM) Dhanbad, India

Abstract - Every manufacturing company wants to improve their operating system in order to survive the industry competition. In manufacturing organizations, to improve their system it might mean to reduce the operating costs that come from the wastes in production line or increasing the productivity in the finishing line. In most of the cases the latter scenario is put to use. However there are consequences of such an option. In order to increase the production, one must also need of extra resources for the additional activities associated with production such as dispatch. This report is an example of such scenario, where one needs to maximize the use of existing resources in order to increase the dispatch of increased production of finished goods through road and rail from Rolling Mill. Initially the rolling mill was producing certain quantity of finished goods and there were enough resources to dispatch the produced finished goods to its customers. Now the demand for finished products increased, and in order to compensate the demand, the production of finished goods increased, and there were more quantity of finished goods left to be dispatched to its customers. Therefore the problem was in the dispatch area, where an increase quantity of finished goods was available to be dispatched, but the existing resources were limited. So the objective of our project is to increase the dispatch of finished goods through road and rail from Rolling Mill using limited resources.

Key Words: Production, Dispatch, Resources, Finished goods, Activities.

1. INTRODUCTION

In a steel manufacturing company, everything is planned, every layout is designed, and almost everything works according to the ones' expectation, but this system rattles when anything goes out of balance. The whole system shakes when the demand for certain product rises above a certain level, especially when the increasing demand needs to be fulfilled with the same limited resources.

The Rolling Mill currently faced a similar situation where it needed to meet the increasing demand using the same level of resources. Previously the rolling mill was producing a certain amount of products such as discrete plates, cut-tolength plates and coils, and was using it resources to dispatch the amount of goods it produced. As the scenario changed the demand for certain products increased, so in order to meet the increasing demands the production also increased, but what was limited is the resources it uses to dispatch those products to its customers. So the problem arises in the rolling mill to increase the level of dispatch of finished goods to its customers using the same amount of resources. The rolling mill needed to dispatch a much higher quantity of finished goods using the same level of resources it used to dispatch a much lower quantity of finished goods. The only question was how can the same amount of resources be used to dispatch a much higher level of finished goods, and that's the objective of this project i.e., to increase the dispatch of finished goods though road and through rake.

In this report the existing "as-is" process of plate mill is studied, through which a detailed plant layout, process flow chart of various processes is made, which is then followed by data collection and analysis through which we were able to calculate the turnaround time and identify the delay and bottlenecks in the process, upon which various tools & techniques such as pareto analysis and cause & effect diagrams to identify the possible reasons of the delay and suggest feasible solutions.

1.1 Genesis of the problem

The purpose behind this project was to correct the following

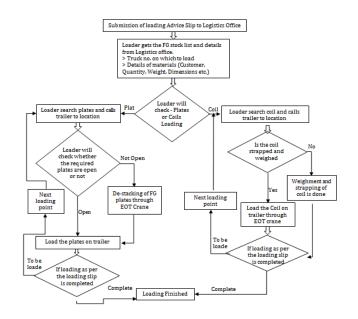
- The demand of products were rising, so in order to meet the rising demand, production various products (such as Cut-to-length plates, coils, discrete plates) was increased
- As the production level increased, the dispatch of the finished products should also increase but the constraint was that the resources were the same, the resources were not increased to meet the increase in dispatch of finished goods
- Using the same resources, we now had to dispatch a much higher level of finished goods
- The dispatch of finished goods had to be increase to meet the increasing demands.
- The space was occupied due to the built-up inventory
- Improper stacking of various finished goods due to lack of space

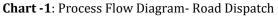
1.2 Objective to be addressed

The objective of this report is to increase the finished goods dispatch through rake and through road

2. RESEARCH METHODOLOGY

In this project, we initiated our work by studying the current system or the "as-is" process with the help of which we were able to map out the layout of the plant, identify the current steps and procedure while carrying out a process, cycle time of various activities, identify no of persons employed in carrying out a process. After studying the "as-is" process of the system, we were able to draw the process flow chart of different activities employed in the system.


The next step was data collection. Past dispatch data of 12-14 months was collected, the current production and dispatch data was gathered and various on-field observations were recorded. The on-field observations were time-study of various activities performed in the system, in order to know the standard time taken by a worker to perform a given set of task or activities. Through on-field observations we also came to know about the various activities involved in a process, a complete work-breakdown structure of a process.


Data collection is followed by data analysis. The collected data is analyzed using various tools and techniques such as pareto charts, bar graphs, cumulative charts etc. All the collected data of past 12-14 months is analyzed and conclusions were drawn. From the analysis various time delays and turn-around time is calculated. Delays and bottlenecks were identified and the cause and effect diagram of the process is made. Standard time of different processes is calculated from the analysis of the data collected.

Industrial engineering tools & techniques were used tc identify the problems in the system such as face to face interaction, interview of the workers for information, time study of different processes, utilization of different workers employed in different set of activities, process flow charts of different process were made, the layout of the plant and equipment was made, employee involvement, time study and work sampling etc. Using above tools and techniques various conclusions were drawn such as the reasons of the delays, cause and effect diagram of the system was made.

Finally different recommendations were made which were in the scope of improvement and which were economically and technically feasible. These suggestions were recommended to the department and their feedback were recorded and validated with the recommendations. The various suggestions were monitored and evaluated on the feedbacks received from the department.

3. DATA COLLECTION & ANALYSIS

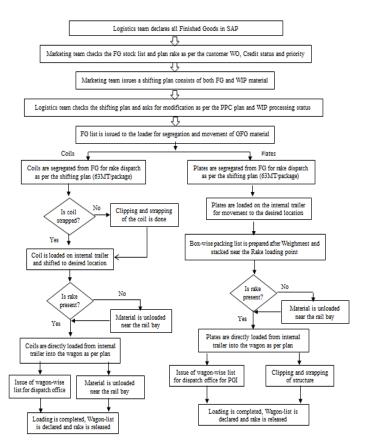



Chart -2: Process Flow Diagram- Rail Dispatch

International Research Journal of Engineering and Technology (IRJET) e-

Volume: 05 Issue: 05 | May-2018

www.irjet.net

	Avg. MT/Month (Apr' 16- May'17)	Max Dispatch (MT)	Max (Ton Per Day)	Remark (As per trends)
Dispatch by Road	22723	29234 (Nov'16) 974 Dispatch rate by Road ha variability		Dispatch rate by Road has less variability
Dispatch by Rake	24808	42694 (Mar'17)	1377	Dispatch Rate of Rake has more variability
Total Dispatch	47590	62466 (Mar'17)	2015	

Chart -3: Monthly Production & Monthly Dispatch for Rolling Mill (Apr'16-May'17)

	No of days	Finish					No C	Finish				
			Discre	ete Plates		WIP	No of	CTL Plate				
Detail		Tonne	Pcs	pcs/day	Tonns /day	Detail	days	Tonne	Pcs	pcs/day	Tonns /day	
Feb	28	17142	3551	127	612	Feb	28	3549	2330	83	127	
March	31	11947	2340	75	385	March	31	7202	5104	165	232	
April	24	15113	3086	129	630	April	24	3473	2786	116	145	
Total	<i>83</i>	44202	8977	108	533	Total	83	14224	10220	123	171	
				inish				Finish				
WIP Detail	No of days		Re	work		WIP No of Total						
Detail	uays	Tonne	Pcs	pcs/day	Tonns /day	Detail	uays	Tonne	Pcs	pcs/day	Tonns /day	
Feb	28	95	117	4	3	Feb	28	20786	5998	214	742	
March	31	3544	2760	89	114	March	31	22693	10204	329	732	
April	24	11	15	1	0	April	24	18597	5887	245	775	
Total	83	3650	2892	35	44	Total	83	62076	22089	266	748	

Table -1: Collection of Past Data

SN	Activity	Activity Code	Resources	Activity time (mins)
1	Shifting of material from Stack to Inspection area	A1	Crane + Supervisor	1.4
2	Visual Inspection (top surface and edge)	A2	Quality Inspector	1.3
3	Shifting of plate from WIP area to bottom stand for inspection	A3	Crane + Supervisor	2.2
4	Visual Inspection (bottom surface and edge)	A4	Quality Inspector	1.2
5	Shifting of plates from bottom stand to WIP inspction area	A5	Crane + Supervisor	2.4
6	Finishing Process (Dimension checking, Length, width and thickness)	A6	Quality Ins+ logistics person	3.2
7	Stenciling and painting as per customer	A7	logistics person	2.5
8	Shifting of plate from WIP to FG area	A8	Crane + Supervisor	2.9
9	Grinding	A9	Grinder	6
10	Gas cutting	A10	Gas cutter	6.5

Table -2: Activity Timings As Is Process

SN	Activity Code	Resources	Activity time (mins)	Crane-1	Crane-2	Quality Inspector-1	Quality Inspector-2	Logistics-1	Logistics-2	Logistics-3	Logistics-4
1	A1	Crane + Supervisor	1.4	1				1			
2	A2	Quality Inspector	1.3				1				
3	A3	Crane + Supervisor	2.2		1	1			1		
4	A4	Quality Inspector	1.2		1	1			1		
5	A5	Crane + Supervisor	2.4		1	1			1		
6	A6	Quality Ins+ logistics person	3.2				1			1	
7	A7	logistics person	2.5							1	
8	A8	Crane + Supervisor	2.9	1				1			
9	A9	Grinder	6								1
		Cycle tiı plate	ne per	4.2	5.7	5.7	4.5	4.2	5.7	5.7	4.0

Table -3: Cycle Time per plate in case of CTL plates

SN	Activity Code	Resources	Activity time (mins)	Crane-1	Crane-2	Quality Inspector-1	Quality Inspector-2	Logistics- 1	Logistics- 2	Logistics- 3	Logistics- 4
1	A1	Crane + Supervisor	1.4	1				1			
2	A2	Quality Inspector	1.3				1				
3	A3	Crane + Supervisor	2.2		1	1			1		
4	A4	Quality Inspector	1.2		1	1			1		
5	A5	Crane + Supervisor	2.4		1	1			1		
6	A6	Quality Ins+ logistics person	3.2				1			1	
7	A7	logistics person	2.5								
8	A8	Crane + Supervisor	2.9	1				1			
9	A10	Gas cutter	6.5								1
		Cycle tim	e per plate	4.2	5.7	5.7	4.5	4.2	5.7	3.2	4.3

Table -4: Cycle Time per plate in case of discrete plates

Description	CTL	Discrete Plates	Product Mix (From past data)	Remarks
Cycle time per plate (min)	5.7	5.7	6.13	Considering activity timing which is maximum
Total time available (min)	1260	1260	1260	Considering 21 hour working
Number of plates (EF Bay)	220	220	205	
Number of plates (AC Bay)	154	154	144	Considering 70% output from the EF bay
Total number of plates	374	374	349	Potential Output

Table -5: Potential Output

3.1 Finished goods dispatch through road

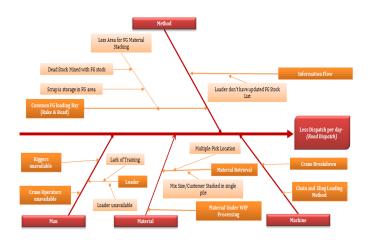
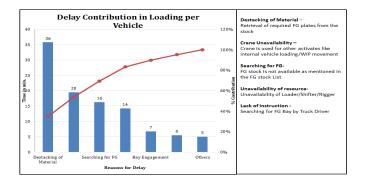
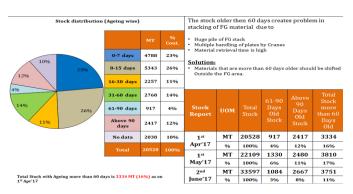


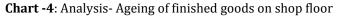
Fig -1: Fishbone Diagram- Delay in Road Dispatch

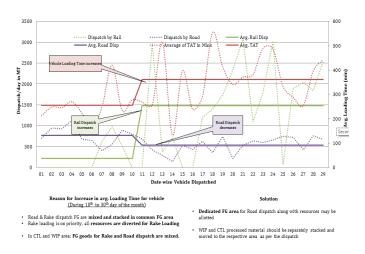
International Research Journal of Engineering and Technology (IRJET) e-I


Volume: 05 Issue: 05 | May-2018

www.irjet.net


e-ISSN: 2395-0056 p-ISSN: 2395-0072




Table -6: Road Dispatch- Vehicle Loading Time Study

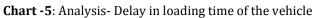
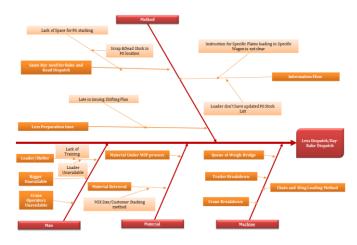


Chart -3: Pareto Chart of vehicle loading delay



Issues	Current practices	Recommendation
Less space for stacking FG	 Plates ageing more than 60 days are stacked in the FG area 	 Materials that are more than 60 days older should be shifted Outside the FG area
FG area is not utilized effectively	 Huge pile of scrap is stored in the FG loading area 	 Scrap from FG area should be evacuated at the earliest to use the space more effectively
Loading time per trailer is very high	 Road & Rake dispatch FG are mixed and stacked in common FG area 	 Dedicated FG area for Road dispatch along with resources may be allotted for loading
De-stacking time is very high	 Generally huge quantity of mixed FG are stacked in individual pile 	 Huge stacking of FG stock in each pile should be avoided
Delay in searching of FG material	• Each FG location is handled by various loaders	 Each FG locations should have loader who will be responsible for FG segregation and loading of the vehicle and maintain related data
Loaders do not have updated FG stock list	 Loader has to visit the Logistic office for FG stock list 	 Updated FG stock list should be made available to the loader Or Online FG stock list may be available on TAB
Crane Unavailability	 Man not available during shift changeover and lunch 	Hot seat exchange should be practiced during shift changeover Time loss during lunch should be minimum Crane Breakdowns to be reduced by regular preventive maintenance

Table -7: Overall scope of Improvement for Road Dispatch

3.2 Finished goods dispatch through rail

Fig -2: Fishbone Diagram- Delay in Rail Dispatch

Dispatch Details for Rake Dispatch from Rolling Mill (Mar'17 & Apr'17) Source: Rake-In Rake-Out Log Book											
	1-10 Mar	1-10 Apr	11-20 Mar	11-20 Apr	21-31 Mar	21-30 Apr					
Total MT	9135	4851	8568	13797	25200	16191					
Avg. Loading Time per rake (hh:mm)	20:00	30:00	12:00	18:00	20:50	27:00					
Avg. Preparation Time per rake (hh:mm)	39:00	30:00	38:00	30:00							
Nos. of Rake	4	8	12	8							
Avg. Wagon/Rake	37	38	23	27	33	32					
Avg. Loading Time/Wagon (hh:mm)	033	0:47	0:44	0:40	0:41	0:48					
Analysis				Histogram Loading Time/Wagon							
Avg. Loading time per Wagon is a 80% of the cases the preparatio plan from marketing and actual EG material Dispatch through Ral Segregation of FG to be dispatch Loading point (During Preparati Loading of FG in the Wagons as plane)		Arg. Wagon Loding T - +45.50 min									

Table -8: Current Trends-Rake Dispatch

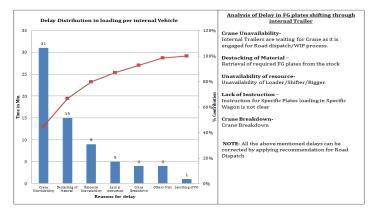
International Research Journal of Engineering and Technology (IRJET)

Volume: 05 Issue: 05 | May-2018

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

ike Loading Observation was conducted for 2 rai Rake 1: Partial Material is under WIP and full shifting of material at loading point is not done in advance

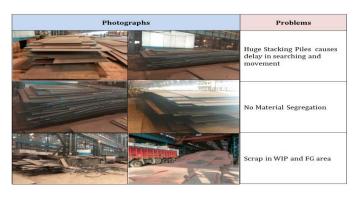

							Time (hh:mm)		
		No. of Wagons		Materia	l Status	Loading Bay	Loading time (incl. delay)	Delays	
	Coil	Plates	Total	FG	WIP	A Bay	21:00	5:10	
Rake 1	16	21	37	80%	20%	B Bay	33:00	18:00	
	Coil	Plates	Total	FG	WIP	C Bay	24:30	11:41	
Rake 2	2	38	40	100%	0%	D Bay	23:00	11:54	

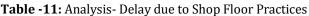
Delay in Rake loading was due to waiting for FG shifting through internal Trailor to Rake Loading area.
 Waiting for WP plates which was under processing Rake 2:
 The load due to e-shifting of Material from One Bay to another bay as specific plates were to be loaded in specific Wagons type
 Time load during shift Changeover

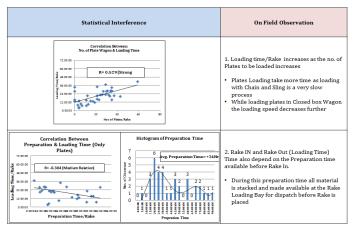
Corrective action for Rolling Mill Rake Disp

As soon as the Rake arrives, **note the position of Open/Closed wagons** and then finalize the Wagon-wise loading list so that specific plates/coll would be loaded to suitable type of wagons. For to be dispatched through Rake should be almost **100% ready** when the Rake is in. If not; remaining material under WIP **p to be given high priority** for finishing & shifting.

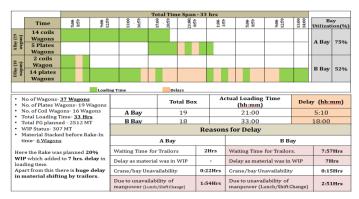
Table -9: Observation of Rake Loading


Chart -6: Pareto Chart of rail loading delay


Issues	Current Practices	Recommended Practices
Late Issue of Shifting Plan by Marketing Team	 In 20% case Shifting plan is issued in less than 24 hours time before rake placement 	 100% Rake shifting plan should be issued 24 hours before placing of rake- In
Preparation time for FG material shifting is not utilized properly	 Shifting of FG plates starts only 8-10 Hrs. before the placement of Rake 	Shifting of Material should start immediately after receiving Shifting Plan
No information about Wagon sequence before rake placement	• Wagon Sequence is noted only after Rake is placed in plate mill	 For better planning, Wagon Sequence information should be provided by the Central Logistic before rake placement
Crane Unavailability	• Man not available during shift changeover and lunch	 Hot seat exchange should be practiced during shift changeover Time loss during lunch should be minimum Crane Breakdowns to be reduced by regular preventive maintenance
Misc. Recommendations for Rake and Road Dispatch	 Layout Modification with FG-1, FG Dispatch. Separate FG material stacking loc WIP and CTL processed material the respective area as per the dis 	ation for Rake and Road Dispatch should be separately stacked and moved to


Table -10: Scope of Improvement for Rake Dispatch

S# No	Resource/Utility	Current (Upto 60,	000 347 (34	Recommendation (Upto 75,000 MT/month)			
5# NO		Current (Opto 60,	000 MI/Monthj	Recommendation (0			
1	Gang per shift(1 Loader+ 2 Rigger)	6			8		
2	Loader per shift for Coil dispatch	1			1		
3	Utilities	10 EOT Crane	s + 2 Trailers	10 EOT Cranes + 4 Trailers			
4	Additional requirement (Gangs + Utilities)	3 Trailer	+ 3 Gang	-			
5	Total Dispatch Points	8 Common Di	anatah Daint	3 Dedicated Road Dispat	tch Point- FG-1, FG-2, FG-4		
5	Total Dispatch Folits		-	5 Common Rake and	d Road Dispatch point		
		R	oad Dispatch				
	FG Dispatch Location	(Upto 25,000	MT/Month)	(Upto 30,00	0 MT/Month)		
	FG-1	1 EOT Crane	1 Gang	1 EOT Crane	1 Gang		
	FG-2	3 EOT Crane	1 Gang	3 EOT Crane	2 Gang		
	FG-3	5 EOT Crane	1 Gang	5 LOT Crane	2 Galig		
	FG-4						
	FG-5	5 EOT Crane	2 Gangs	5 EOT Crane	3 Gangs		
	FG-7	5 EOT Grane		5 LOT Clane	5 Galigs		
	FG-8						
	FG-6 (for Coil Dispatch)	1 EOT Crane	1 Loader	1 EOT Crane	1 Loader		
		R	ake Dispatch				
	FG Dispatch Location	(Upto 35,000	MT/Month)		0 MT/Month)		
	FG-3	2 EOT Crane	2 Gangs	2 EOT Crane	2 Gangs		
	FG-7	2 EOT Crane	-	2 EOT Crane	2 dangs		
	Additional Requirement (Gangs+ Utilities)	Trailer + Gang are ir en		Gangs can be shared from the Road Loading area			


Table -11: Recommended Resources for Road & Rake Dispatch

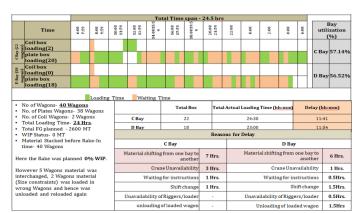


Table -12: Analysis- Rake in-Rake out Time

Table -13: Rake-1 Loading Observation

Table -14: Rake-2 Loading Observation

Т

Т

ISO 9001:2008 Certified Journal

Page 1235

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 05 Issue: 05 | May-2018

www.irjet.net

Dispatch	of Plate	<u>s</u>			Dispatch of Coil						
Time Line Chart for Pl	ate Dis		gh Rail	250	Time Line Chart for Coil Dispatch/Wagon through Rail						
Leading material on Traile Unloading Material in Rall Ray Leading Material on Wagon	- Valu		Vagon		0 Loading materail on Trailer Unloading Material in Rail Bay Loading Material on Wagon	20		erial Shifting 105 Wag	m in.		
Non value Adding Activit	es				Value Adding Activities Value Enabling Activites Non value Adding Activites						
Material Loading Cycle for P min	lates I Wago i		Wagon	- <u>210</u>	Material Loading Cycle for Coils Dispatch per Wagon- <u>105</u> <u>min/Wagon</u>						
Activities (Description)	VA	EVA	NVA	Total	Activities (Description)	VA	EVA	NVA	Total		
Loading material on Trailer	43	53	34	130	Loading material on Trailer	11	5	10	26		
Unloading Material in Rail Bay	0	29	8	37	Unloading Material in Rail Bay	0	23	10	33		
Loading Material on Wagon	31	18 (Parallel)	12	43	Loading Material on Wagon	21	39 (Parallel)	7	46		
	Note: The above observation is Avg, of 10 samples observed from the field. Parallel activities are the Clipping and strapping of loaded plates						les observed from of support structu		d.		

Table -15: Rake Dispatch- turnaround Time Study/Wagon

3. CONCLUSIONS

Sr. No	Finished Good Loading Area	Nos. of FG storing Cell, MT- capacity	Current Practices	Recommended Practices
1	FG -1	32 Cells, 3200 MT	Road and Rake Mixed FG Dispatch No Change No Change No Change No Change	Only Road Dispatch
2	FG-2	39 Cells, 3900 MT		Only Road Dispatch
3	FG-3	32 Cells, 3200 MT		
4	FG-4	12 Cells, 1200 MT		
6	FG-7	35 Cells, 3500 MT		No Change
7	FG-8	20 Cells, 2000 MT		No Change
8	FG-6	34 Cells Only Coils	Road and Rake Coil Dispatch	Road and Rake Coil Dispatch
Total		204 Cells, 20400 MT		

Table -16: Distribution of FG storage Capacity Rolling MillDispatch

Area of Improvement/ Suggestion			
Two cranes should be dedicated for the WIP	# one crane should be doing the bottom inspection # crane should be busy in shifting material to and from stock to WIP		
Logistics person (6 men) for the grinding of the plates	# Grinders should be dedicated for grinding process # Separate manpower should be available for the finishing process, grinders should not be used for finishing process		
Logistics person (6 men) for the gas cutting of the plates	# Gas cutting should be given priority # gas cutter may be used for the finishing process only if there in no plates for gas cutting		

Table -17: Scope of Improvement

REFERENCES

- [1] ILO (1994), "Introduction to Work Study", First Indian Edition, Oxford & IBH Publishing Co. Pvt. Ltd., Geneva.
- [2] Sharma, H.D., (1988). "Textbook of Work Study", Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi.

- [3] Oliver Rose, "WIP evolution of a semiconductor factory After a bottleneck work-center breakdown", Institute of Computer Science University of Wurzburg 97074 Wurzburg, Germany
- [4] Vasanth Raj Yuvaraj, Sifei Zhang, "Reducing WIP Inventory of Production Line in AQ Segerström & Svensson AB", Mats Jackson, Mälardalen University
- [5] Rajat Kumar Panigrahy, Ashok Kumar Panda, Srikanta Patnaik, "Rourkela steel plant automation: A case study", Industrial Training Institute, Berhampur, SAIL, Rourkela Steel Plant, I.I.M.T, Bhubaneswar
- [6] Productivity improvement report,2015, V. M. Chandekar, Director (Technical) ANT Steel Engineers (Asia) Pvt. Ltd

BIOGRAPHIES

Aman Raj Sinha, M.Tech Industrial Engineering & Management, Indian Institute of Technology (Indian School of Mines) Dhanbad,

Smriti Shourya, M.Tech Industrial Engineering & Management, Indian Institute of Technology (Indian School of Mines) Dhanbad,