
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1794

FPGA Implementation of Image Enhancement Using Verilog HDL

Mandeep Singh Narula1, Nishant Singla2

1Professor, Dept. of E.C.E., JIIT, Noida, India
2Student, Dept. of E.C.E., JIIT, Noida, India.

---***--
Abstract - The demand of Image Processing methods

traditionally implemented on a digital processing software
such as MATLAB is increasing widely to get high performance.

In this project we implemented four basic operations of
Image Enhancement i.e. threshold, contrast, brightness, invert
to manipulate the RGB values of every pixel of the image to
improve the human interpretation of image[1].

To perform the above mentioned operations we have
implemented Image Enhancement on FPGA (Field
Programmable Gate Array) using Verilog HDL.
Implementation in HDL (Hardware Description Language) is
quite different from implementation in MATLAB mainly
because of the parallel nature of the HDLs. The system is
implemented on FPGA[5], which is modern programmable
logic device, i.e. we can program almost any digital function in
it.

Keywords - Verilog; FPGA,DE0 Nano; Image Enhancement

I. INTRODUCTION

There are many Hardware Description Languages (HDLs)
available to help the engineers describe the circuit both
logically and functionally so that they can simulate and
properly calculate the performances with the help of
personalized test environment and clock cycle.

Since the HDL syntax is always related to a hardware
structure, the timing information of the potential hardware
implementation is also available allowing specific speed
optimizations. Above all, with the use of HDLs it means that
we can enjoy hardware portability and on-the-fly re-
programmability. But here the bigger challenge is to
implement the validated algorithms into a non-programming
language as hardware description languages are. Also, the
input and output RGB files need to be constructed accordingly
to match the binary content permitted into the hardware
simulators[4].

Fig - 1 : Block Diagram of the System

Among all, the most interesting image processing approaches
is the image enhancement. The importance for this domain is
mainly for two application directions:

1. Improve the human interpretation and enhance the
pictorial visual information;

2. Modify information of image illustration so as to optimize
it for data storage, transmission or different illustration for
autonomous machine perception.

The main goal of any improvement methodology is simply
too acquire a a lot of appropriate result compared with the
first as is from the purpose of read of a selected application.

Any image improvement procedures are often categorised
into 2 approaches: spatial domain methods and frequency
domain methods. The spatial domain refers to the pixels
structure of the image plane itself and this sort of
improvement is predicated on direct manipulation of these
pixels of a picture. Frequency domain process techniques
area unit mistreatment mathematical transforms to induce
totally different enhancements. The Fourier remodel of a
picture is accepted for these functions[9].

Some of the best, yet useful, image process operations within
the spatial domain involves the adjustment of brightness,
distinction or colour a picture. A reason for manipulating
these attributes is to reduce the difficulties in image
acquisition and with image process we will increase the
general brightness of the item of interest and amplify the
small residual variations in distinction across it. This image
process operations will reveal enough detail to permit
correct interpretation. Some mainly used point operations
are: [2]

• modifying image brightness or contrast,

• applying arbitrary intensity transformations
(“curves”),

• quantizing (or “posterizing”) images,

• global thresholding,

• gamma correction,

• color transformations.

II. IMPLEMENTATION OF IMAGE ENHANCEMENT
METHODS USING VERILOG HDL

Point process operation is performed to reinforce a picture
and details not clearly visible within the original image could
come into view upon application of the point operation. The
aim of the paper is to explain some basic image enhancement
strategies employing a hardware description language,
Verilog.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1795

The Verilog language has the power to browse or write files
from a storage setting. This feature create it potential to
significantly style the test benches to browse the test
information from device, generate the stimulant signals to
the Verilog check module and write back the results to the
device. sadly, Verilog solely browse (and write) ASCII
character files being unable to browse pictures in
commonplace formats like image or jpeg directly from disk
[6].

The project is implemented on FPGA using Verilog, which is
Hardware Description Language. The code written in Verilog
describes the behaviour of the desired hardware. The code is
taken by Altera’s synthesis tool (we use Altera’s toolchain
because we have an Altera Cyclone IV FPGA) which ‘try’ to
find an implementation of the description of the code.

The word try is empathised as the tools, advance as they may
be, might not be able to find a correct implementation for
given description or might produce poor or overly complex
implementation, thus it is our job as designer to write
synthesizable code.

The main idea is to have a general view of the kind of circuit
implementation will be derived by the tools and to logically
partition the module in the code, it is easy to correctly
implement small module interconnected then a very big and
complex block.

RGB-files contain only information about RGB vector for each
pixel of the input image and does not contain information
about image dimensions or similar. The data from files was
applied as stimulus to the point operations blocks described
in Verilog language.

The result was obtained in another external file and we
create an application described in MATLAB to show the
modified output image and to compare with the original
input image.

Next, we describe the theory and implementation, using
Verilog language, of most commonly used point operations
used for image enhancement[3]:

A. Contrast manipulation

B. Brightness manipulation

C. Inverting images

D. Threshold operation

In view of above ideas, we have tried to best partition our
implementation, using many modules.

a. Hardware

The system is supposed to be implemented on a Terasic DE0-
Nano[8] FPGA development board. As the board does not
have many peripherals we need to make our own expansion
board to connect the FPGA to controller, VGA monitor . All

the hardware built along with the development board is
explained in this section.

b. Terasic DE0-Nano FPGA Development Board:

This Project uses a Terasic DE0-Nano FPGA Development
Board, it introduces a compact-sized FPGA development
platform suited for to a wide range of portable design
projects.

The DE0-Nano features a powerful Altera Cyclone IV FPGA
(with 22,320 logic elements), 32 MB of SDRAM, 2 Kb
EEPROM, and a 64 Mb serial configuration memory device.
For connecting to real-world sensors the DE0-Nano includes
a National Semiconductor 8-channel 12-bit A/D converter,
and it also features an Analog Devices 13-bit, 3-axis
accelerometer device.

The DE0-Nano board includes a built-in USB Blaster for FPGA
programming, and the board can be powered either from this
USB port or by an external power source. The board includes
expansion headers that can be used to attach various Terasic
daughter cards or other devices, such as motors and
actuators. Inputs and outputs include 2 pushbuttons, 8 user
LEDs and a set of 4 dip-switches.

The key feature of the board are listed below –

• Featured device

o Altera Cyclone IV EP4CE22F17C6N FPGA

o 153 maximum FPGA I/O pins

• Configuration status and set-up elements

o On-board USB-Blaster circuit for programming

o Spansion EPCS64

• Expansion header

o Two 40-pin Headers (GPIOs) provide 72 I/O pins, 5V
power pins, two 3.3V power pins and four ground pins

• Memory devices

o 32MB SDRAM

o 2Kb I2C EEPROM

• General user input/output

o 8 green LEDs

o 2 debounced pushbuttons

o 4-position DIP switch

• G-Sensor

o ADI ADXL345, 3-axis accelerometer with high
resolution (13-bit)

• Clock system

o On-board 50MHz clock oscillator

• Power Supply

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1796

o USB Type mini-AB port (5V)

o DC 5V pin for each GPIO header (2 DC 5V pins)

o 2-pin external power header (3.6-5.7V)

c. Verilog HDL Hardware

The complete system is implemented in Verilog. As a
successful implementation in Verilog calls for good logical
partitioning of the circuit, various modules are created that
are interconnected to make the whole system.

Module Name: Contrast Operation: - This module changes
the contrast of the picture by setting the darkest pixel value
to black, the brightest value to white, and others to different
shades of gray which makes good use of the display and
enhances the visibility of features in the image[10].

Module Name: Brightness Operation: - This module
changes the brightness of the picture by adding or
subtracting a fixed value to the pixel value. The purpose of
the below mentioned code is add and subtract a constant
value to the image pixel values

Module Name: Invert Image: - This module inverts an
image by inverting the bits of the grayscale pixel value of an
image.

And, to change a coloured image into a grayscale one, the
RGB pixel values must be equalized and it is done by taking e
the average of the three color components[7].

Module Name: Threshold operation: - This module is used
to perform the threshold operation i.e. set the pixel above a
threshold value to 255 and below it to 0.

The threshold operation can be performed using below
mentioned Verilog testing code[9].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1797

III. Advantages of FPGA

 Better performance than DSP’s

 Less Time to Market

 Low long-term Cost

 More Reliability

 Long-term Maintenance

IV. RESULTS

The simulation results obtained after applying the operations
described using Verilog HDL to an input image are shown
here.

Fig - 2 : Verilog result for Invert Operation

Fig - 3 : Verilog result for Contrast Operation using
threshold = 90, valueToAdd = 10 and valueToSubtract = 15

Fig - 4 : Verilog result for Brightness Operation using sign
= 0 and value = 60

Fig - 5 : Black & White result using threshold = 120

V. REFERENCES

[1] John C. Russ - “Image Processing Handbook (sixth
edition)”, CRC Press, pp. 270-331, 2011

[2] Raman Maini, H. Aggarwal - “A Comprehensive
Review of Image enhancement Techniques”, Journal of
Computing, vol. 2, issue 3, ISSN 2151-9617, pp. 269-300,
2010.

[3] Wilhelm Burger, Mark J. Burge - “Principles of Digital
Image Processing – Fundamental Techniques”,
Undergraduate Topics in Computer Science, DOI
10.1007/978-1-84800-191-6_4, Springer- Verlag
London Limited, 2009.

[4] A. Zuloaga, J.L. Martin, U. Bidarte, J.A. Ezquerra -
“VHDL test bench for digital image processing systems
using a new image format”, ECSI, 2007
(http://mx.reocities.com/CapeCanaveral/8482/).

[5] Daggu Venkateshwar Rao, Shruti Patil, Naveen Anne
Babu and V. Muthukumar - “Implementation and
Evaluation of Image Processing Algorithms on
Reconfigurable Architecture using C-based Hardware
Descriptive Languages”, International Journal of
Theoretical and Applied Computer Sciences, Volume 1,
Number 1, pp. 9–34, 2006
(http://www.gbspublisher.com/ijtacs/1002.pdf).

[6] “Verilog HDL” by Samir Palnitkar, 2003, ISBN 0-13-
044911-3 [Publisher: Prentice Hall PTR]

[7] R. C. Gonzalez, R. E. Woods – “Digital Image
Processing”, Prentice Hall, ISBN 0-13-094659-8, pp. 1-
142, 2002.

[8] Bovik, A. (Ed.). (2000). Handbook of image and video
processing. Texas: Academic Press.

[9] Nick Efford - “Digital Image Processing – A Practical
Introduction Using Java”, pp. 103-132, 2000.

[10] Fisher, R., Perkins, S., Walker, A., & Wolfart, E.
(1996). Hypermedia image processing reference.
Chichester: John Wiley & Sons, Inc.

