
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2064

SORTING OVER ENCRYPTED DATA USING BUBBLE SORT

Ms. Sneha Dalvi1, Mrs. Rashmi Dhumal2

1Computer Department, Terna Engineering College ,Maharashtra, India
2AssociateProfessor, Ramrao Adik Institute of Technology, Maharashtra, India

---***---
Abstract- Whilst cloud computing is gaining, growing
popularity in IT Industry. Organization and Business users
feel convenient to use cloud storage due to better utilization
of resources, low cost and easy access to data anytime,
anywhere. The efficiency of sharing encrypted data with
many users via public cloud storage may create security
related issues. However, performing operations on
encrypted Information requires extra overhead, since
repeated encryption-decryption need to be performed for
every single operation. Fully Homomorphic Encryption
(FHE) is an Effective way to perform arbitrary operations
directly on encrypted data. This paper contains
Implementation of FHE operations to perform Searching
and sorting algorithm by using Scarab library.

Index Terms: Cloud Computing, Encryption,
Decryption, Fully Homomorphic Encryption, Searching
and Sorting.

1. INTRODUCTION

With the advent of cloud technology, the proliferation of
cloud in various applications is enormous. Cloud
computing [2] is a technology, which provides services to
enterprises on demand also it provides a service based
platform where large amount of data is shared over the
internet. Cloud provide on-demand access to a pool of
shared, configurable computing resources so that the data
can be made available anywhere any time. Cloud provides
a variety of services, it allows consumers and businesses
to use applications without installation and access their
personal file from any computer with the help of internet.
[1] It also offers online data storage, infrastructure and
application. It is architecture for providing computing
services via internet on demand and pay per use access to
a pool of shared resources for the network storage,
services and applications. It is totally an internet based
technology in which client data is stored and maintained
in data centre of cloud providers.

Advantages of Cloud Computing

1. Reduced Cost Cloud technology is paid
incrementally, saving the money of organizations.

2. Increased storage Organization can store more
data than on private computing system.

3. Highly automated No longer do IT personnel need
to worry about keeping software up to date.

4. Flexibility Cloud computing offers much more
flexibility than past computing methods.

Cloud Computing Service Models as: Software as a Service
(SaaS) is a software application model in which customers
pays to access and use software functionality over
network. Infrastructure as a Service (IaaS) provides
virtualized computing resources over Internet. Platform as
Services (PaaS) provides customers to develop, run and
manage application without the complexity of building
and maintain the infrastructure and platform.

To perform any operation on encrypted data one has to
download and decrypt it at client side and after processing
it further has to encrypt the data and has to uploaded to
cloud. This obviously needs repeated decryption
encryption. Direct processing on encrypted data is
advantageous which can be done by using arbitrary
algorithms, which is supported by Homomorphic
encryption.

Homomorphic encryption is defined as a form of
Encryption which allows different types of computations
to be carried out on cipher text and to obtain an encrypted
result that when decrypted matches the results of
operations performed on the plaintext.

Advantages of Homomorphic Encryption:

1. Increased security of offshore data, while
performing computing operations.

2. Guarantees confidentiality of user data

3. HM makes distributed computing secure.

Fig -1: An Example of Homomorphic Encryption

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2065

The main categories of Homomorphic encryption Schemes
[5][16] are:

1. Somewhat Homomorphic Encryption (SHE)
2. Partially Homomorphic Encryption (PHE)

3. Fully Homomorphic Encryption (FHE)

1. Somewhat Homomorphic Encryption Scheme
allows a specific class of function to be evaluated
on cipher text. Usually this scheme supports an
arbitrary number of one operation but only a
minimum number of second operations.

2. Partially Homomorphic Encryption (PHE)
algorithm support any one of the operation either
adding or multiplying encrypted cipher texts, but
not both operations at a same time.

3. Fully Homomorphic Encryption (FHE) Scheme
supports any arbitrary operation on encrypted
data such as multiplication and addition at the
same time, correspond to AND and XOR in
Boolean algebra.

FHE perform arbitrary operations on encrypted data. With
the support of FHE, cloud can evaluate any functions on
encrypted data without having access to the secret key
and without knowing the result.

Fig-2: The Process of Using FHE to Cloud Computing

To secure data on cloud, the data should be encrypted
using FHE, where clients private data which is in
encrypted form is stored on cloud for performing any
arbitrary operations and after calculation the computed
results is directly decrypted on clients pc using the clients
secrete key.

First, the client will login and uses the key-generation
provided by the server to generate the secret key, the
client is the only owner of the secret key. Then, the client
has to encrypt the data before storing data on the cloud,
and if later he wants to perform any arbitrary
computations on encrypted data, then the client has to

send a request to server. Accordingly the server performs
the required operations and sent the encrypted result to
client. Finally the client can decrypt the data with the help
of secret key to retrieve the result.

2. LITERATURE SURVEY

In [1], the author develops a version on cloud computing,
that accepts inputs in encrypted format and then perform
processing to satisfy the client query without being aware
of its content, whereby the retrieved encrypted data can
only be decrypted by the client who sends the request.

In [2], the author presents a description of security
problem in cloud computing and use of FHE scheme to
provide solution for this difficulty. The papers present a
new technique of Homomorphic Encryption that provides
security to the private data and also provide mechanisms
for searching or processing encrypted data.

In [3], the author uses the Homomorphic encryption for
encrypting the user’s data in cloud server and executes
computations on encrypted data. The paper also analyses
the existing Homomorphic encryption schemes like DGHV,
Gen10, and SDC and discuss the use of the most efficient
SDC scheme, to secure cloud computing data.

In [4], the author discusses the issues involved in
translating the variable definitions, instruction executions,
handling of loops and terminating conditions when the
algorithms handle encrypted data and encrypted controls.
The paper provides for translating basic operators like
bitwise, relational and arithmetic operators which are
used for implementation of algorithms in any high level
language like C.

The Authors proposed [5] a Homomorphic encryption
with a feature to detect zero, detect equality, examine the
value or detect overflow on cipher text is not secure if
there is no restriction to limit the times of operating these
functions. However with few restrictions, a HE encryption
scheme can still detect zero with the key owner decrypting
the cipher text and pronouncing the result if all people are
allowed to detect zero on cipher text.

In [6], the author presents a FHE scheme which has both
relatively small key and cipher text size. The scheme has
small message expansion and key size than Gentry’s
original scheme. The proposal allows efficient FHE over
any field of characteristic two

In [7], the author propose the first fully Homomorphic
encryption scheme that solves a universal problem in
cryptography. The paper includes discussion on a
somewhat Homomorphic “boots trappable" encryption
scheme that works when the function f is the scheme's
own decryption function. The author shows how, through
boot trappable encryption gives FHE

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2066

In[8] the writer indicates the security that affects cloud
computing and proposes using Homomorphic encryption
as a remedy for coping with these serious security
concerns.

In [9], the author provides implementation of different
algorithms that sort data encrypted with FHE scheme that
are based on Integers. The complexities of sorting
algorithms on encrypted data using Insertion Sort, Odd-
Even Merge sort, Bubble Sort, and Bitonic Sort are
analysed.

In [10] the authors proposed a Fully Homomorphic
Encryption scheme to secure the client data in cloud
computing which enable to perform arbitrary
computations on encrypted data without decrypting. This
paper discusses the FHE scheme and its implementation
using scarab library. It also consist of operations on
encrypted data using Scarab library.

[11] In this paper, the authors Ayantika and Indranil have
used FHE on arbitrary operations and benefit has obtained
on execution on arbitrary algorithms on encrypted data.
They also has provide techniques to translate basic
operators (like bitwise, arithmetic and relational
operators)which are used for implementation of
algorithms in any high level language like C. They has also
address decision making and loop handling and data
structures to realize the controlling variables on
encrypted data and proposed a method of handling
termination by message passing between server and
client.

The confidentiality of data in cloud can be achieved by
encrypting data, but increases security related issues and
diminishes the essence of cloud while performing
operations on cloud data by repeated decryption-
encryption process also processing on Encrypted Data
requires an extra overhead but (FHE) Fully Homomrphic
Encryption provides a remedy to support arbitrary
operations directly on encrypted data.

3. METHODOLOGY

a) FHE Working:

 A (fully) Homomorphic encryption scheme €

comprise of four algorithm:

 keyGen, Enc, Dec and Evaluate.

 For(Sk, Pk) KeyGen (), Plain Text message
m with corresponding cipher text c and
circuit C , we say that € is correct if

Dec (Sk, Evaluate (Pk, C, c)) = C (m)

€ is Fully Homomorphic Encryption for all circuit C

This algorithm takes as input a polynomial expression P
and a set of cipher text C = {C0, C1,...,Cn} which are needed

to compute P. Eval is the evaluation algorithm used for
computation on encrypted data. In the above expression
Pk denotes keys that are public, like encryption key and Sk
denotes private or decryption key which is secret and
known only to the generator of the keys

To illustrate Eval, consider polynomial expression P(X, Y)
= X+ Y which adds two cipher text X and Y and results in
addition of corresponding plaintexts.

According to Equation for cipher text inputs(A,B) we have,

Dec(Eval(P, A, B)) = Dec(P(A, B))

= P(Dec(A) + Dec(B))

b) Scarab Library:

Scarab library is used for implementation of a FHE scheme
using large integers.[12] Scarab library is comprised of
sequences of specific mathematical and logical
manipulation by using arithmetic, logical and bitwise
operators[15][16].Helping libraries required for
implementing scarab library are the GNU[13] Multiple
Precision Arithmetic Library (GMP).Fast Library for
Number Theory (FLINT) it is a c library used for larger
integers. [14]Whereas scarab library consist of various
functions such as;FHE _add , FHE _mul, FHE _fulladd,FHE
_halfadd.

c) Operations on FHE

This section focus on how basic arithmetic operations like
addition, multiplication less than greater than and
swapping can be done by using Fully Homomorphic
primitives present in Scarab library.

FHE add:

Addition between two encrypted bits by using FHE adds
module is perform by using scarab. Whereas the operands
are of size 32 bits and final addition of both two operands
will perform bitwise addition operation. FHE Full_add
module is used for every bitwise addition.

Example: let’s take two input as ‘a’ and ‘b’ given to function
FHE_ENCRYPT, then bit ‘a’ is Enc(c1) and ‘b’ is Enc(c2) and
pk is the public key generated by FHE_keygen function
further the input is given to FHE_add and Bitwise OR is
performed by FHE_add module and results are generated
in ‘c3’ to obtain the results we have to decrypt the value of
‘c3’ by using FHE_DECRYPT. Carry is discarded if any.

FHE sub:

The Scarab Library performs subtraction operation
between two encrypted bits by using FHE sub module.
Whereas the operands are of size 32 bits and final
subtraction both two operand will perform by Inverse
subtraction operation. FHE full_sub module is used for
every inverse subtraction.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2067

Two input is taken as ‘a’ and ‘b’, which is given to Function
FHE_ENCRYPT. Then bit ‘a’ is Inv(c1) & ‘b’ is (c2). Further
the input is given to FHE_sub, and Inverse is performed by
FHE_sub module and results are generated in ‘C3’ to
obtain the result we have to decrypt the value of ‘C3’ by
using FHE_DECRYPT.

FHE mul:

The FHE_mul function present in Scarab library performs
bit-wise multiplication of cipher texts using AND
operation.

Example: a=0, b=1, A=enc(a), B=enc(b) FHE_mul function
will take A, B and pk as input and will return the
multiplication of A, B say C such that dec(C)=0.

FHE Mux:

FHE sub is performed between two input ‘a’ and ‘b’. MSB
of the subtraction result is used to find whether the result
is greater than equal two relations between two operands.
MSB equals to 1 indicates ‘a’ is less than equal to ‘b’ else
otherwise. Its only checks if the MSB of subtraction result
is Enc(0) or Enc(1). However, if two operands are exactly
equal, then the MSB is also equal to Enc(0).

FHE Check:

This is module is designed to check if the two FHE data are
equal. If two operands is equal then FHE subtraction of the
operand result as Enc(1) and the result will display as
‘True’, and if the operand is unequal then FHE subtraction
of two operand results as Enc(0) will display ‘false’.

FHE Bigger than/Smaller than:

If the inputs ‘a’ and ‘b’ are send to FHE GrtEq module and
FHE Equal module. Then, the output of FHE GrtEq module
is multiplied (FHE AND operation) with the inverted
output of FHE Equal module and the final output of
FHEGrt is produced. That implies if two operands ‘a’ and
‘b’ are not equal then the FHE Equal module will give the
output as Enc(0) and hence the inversion is Enc(1). Then
the final output of FHE Grt module will depend only on the
greater relationship of two operands.

FHE halfadd:

This function performs addition of two encrypted bits with
carry out.

Example: a=1, b=1, A=enc(a), B=enc(b). FHE_halfadd
function will take A, B and pk as input and will return the
addition of A, B say C such that dec(C)=0 and carry
generated say c_out where dec(c_out)=1.

FHE fulladd:

This function performs addition of cipher texts with carry
in and carries out.

Example: a=1, b =1, A=enc(a), B=enc(b).

FHE_fulladd function will take A, B, pk and c_in as input
where c_in is the carry generated from previous

FHE_full add operation. This function forwards the carry
generated, for that we have to set c_in = c_out.

Output will be the addition of A, B say C such that
dec(C)=0 and dec(c_out)=1.

FHE swap:

FHE_swap function is implemented using basic

FHE_add, FHE_sub and FHE_mul operations of scarab
library. It is used to swap two cipher text values.

To swap two cipher texts a and b, first subtraction of a and
b using arithmetic based on 2's compliment is performed.
Most Significant Bit of subtraction result is stored in β.
According to bit-wise arithmetic, the value of β is 1 if the
subtraction result is negative and 0 otherwise.

For swapping a and b using MSB β following steps are
followed [9]:

1. β =MSB[a + (2's compliment of b)]
2. temp = β * a + (1 − β) * b
3. b = (1 − β)

4. a = temp

4. IMPLEMENTATION OF BUBBLE SORT

Let A = {A1... An} be a set where Ai = Enc(ai) for some
plaintext integer ai that we need to sort (in ascending
order). Fundamental difference between sorting of
plaintext data and encrypted data is described in Table I.
While sorting integers, (ai, aj) are swapped on the output
of the comparison operation. However, in the case of
encrypted inputs, both comparison and swap are
combined together inside the FHE SWAP circuit. Note that
the output of FHE SWAP (Ai, Aj) is encrypted and without
decryption there is no way of knowing if inputs are
swapped. Thus, to sort the set A, it is necessary to call FHE
SWAP (Ai, Aj) for every pair with indices i, j (i < j).

Table–1: ALGORITHMS FOR SORTING ENCRYPTED AND
UNENCRYPTED DATA

Swap on

Unencrypted Data

Swap on

Encrypted Data

1)For every pair with
indices i , j with i< j

1)For every pair with
indices i , j with i < j

2) Compare (ai, aj) 2)(Xi,Xj)
FHE_SWAP(Ai,Aj)

3) Swap (ai ,aj) if
necessary

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2068

Working of Bubble Sort in Encrypted Domain with
Example:

1. Consider the Following Numbers as an Inputs

 4, 2, 54, 42, 12

2. Encrypt the Inputs using Fully Homomorphic
Encryption

3. First Iteration

3.1. Comparison of first two Elements using

FHE_MUX and FHE_SWAP Module

3.2. Resulting Table

3.3. Applying FHE_MUX and FHE_SWAP on
remaining Encrypted Elements

3.4. Hence, the Final Result of First Iteration is as
follows

4. Second Iteration

As the Bubble Sort Compares till the last element. Though,
the Final Sorted List is as follows

5. Decrypt the Encrypted Inputs after Sorting.
So, we get

Table -2: SORTING ALGORITHM AND THEIR
COMPLEXITIES IN PLAIN AND ENCRYPTED DOMAINS

ALGORITHM PLAIN DOMAIN ENCYPTED DOMAIN

 (BEST CASE) (ANY CASE)

Bubble Sort O(n) O(n2)

For any sorting algorithm, time taken for sorting depends
on the number of comparisons. For FHE sorting,
comparison of cipher text integers in an array is the most
expensive operation. Therefore, complexity of FHE sorting
directly depends on the number of comparisons.

Table -3: AVERAGE TIME REQUIREMENT FOR
COMPARISON OF BUBBLE SORT IN PLAIN

ANDENCRYPTED DOMAINS

NO .OF
ELEMENTS

PLAIN
DOMAIN

ENCYPTED
DOMAIN

 (Seconds) (Seconds)

6 13.25 367

9 22.19 542

12 38.28 1332

15 30.23 1550

As we can see time required for sorting elements in plain
domain is less as compared to encrypted domain, but if we
consider the security as a factor best results is achieved in
sorting elements in encrypted domain.

5. CONCLUSION

Traditional Cryptography Strategies keep records in
encrypted form, but do not permit to carry out any
operations on encrypted records.

Thus (FHE) allows to permit arbitrary operations on
encrypted facts, though benefit of Fully Homomorphic
Encryption (FHE) can be achieved if it operates arbitrary
set of rules on encrypted facts without decrypting. This
paper discusses the FHE scheme and its implementation
using scarab library with Bubble sort. It additionally
addresses numerous operations on encrypted Facts with
the use of scarab library.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 2069

6. REFERENCES

[1] Shashank Bajpai and Padmija Srivastav, “A
FullyHomomorphic Encryption Implementation on
Cloud Computing”, International Journal of
Information &Computation Technology ISSN 0974-
2239 Volume 4, Number 8 (2014), pp. 811-816

[2] P. Mell, T. Grance, "The NIST Definition of Cloud
Computing," National Institute of Standards and
Technology, U. S. Department of Commerce, (2011)

[3] Sweta Agrawal, Aakanksha Choubey, “Survey of
Fully Homomorphic Encryption and Its Potential to
Cloud Computing Security”, International Journal of
Advanced Research in Computer Science and Software
Engineering Volume 4, Issue 7July, 2014

[4] Ihsan Jabbaran and Saad Najim, “Using Fully
Homomorphic Encryption to Secure Cloud
Computing”, Internet of Things and Cloud Computing
Volume 4, Issue 2, April 2016, Pages: 13-18

[5] S. Wang, D. Agrawal, and A. El Abbadi, Is
Homomorphic Encryption the Holy Grail for
Database Queries on Encrypted Data? Technical
Report, Department of Computer Science, UCSB, 2012

[6]Emmadi, Nitesh, Gauravaram, Praveen,
Narumanchi Harika, & Syed, Habeeb (2015) “Updates
on sorting of fully Homomorphic encrypted data”. In
8th IEEE International Conference on Cloud
Computing, June 27 - July 2 2015, New York, USA. (In
Press)

[7] Aderemi A. Atayero, Oluwaseyi Feyisetan,
"Security Issues in Cloud Computing: The Potentials of
Homomorphic Encryption", Journal of Emerging

[8] Chatterjee, A. & Sengupta, I. (2015). “Searching and
Sorting of Fully Homomorphic Encrypted Data on
Cloud”.

[9] “Updates on Sorting of Fully Homomorphic
Encrypted Data” by Nitesh Emmadi, Praveen
Gauravaram, Harika Narumanchi∗, Habeeb Syed
International Association for cryptologic research
(2015)

[10]“Operations on fully Homomorphic encrypted
data on cloud “ by Sanket Vyapari, Shivani Tawde,
Mitali Joshi, Achyut Pratap, Rashmi Dhumal in
International Journal of Technical Research and
Application e-ISSN: 2320-8163, www.ijtra.com
Special, Issue 43 (March 2017), PP. 10-14

[11] Ayantika Chatterjee and Indranil Sengupta.
“Translating Algorithms to handle Fully Homomorphic
Encrypted Data on the Cloud”. IEEE Transactions on
Cloud Computing. DOI 10.1109/TCC.2015.2481416

[12]https://github.com/hcrypt project/libScarab

[13] T. G. et al., “GNU multiple precision arithmetic
library:https://gmplib.org/.”

[14] W. H. et al., “Flint: Fast library for number
theory:http://www.flintlib.org/authors.html

[15]C.Gentry, A Fully Homomorphic Encryption
Scheme

[16]N.Smart and F. Vercauteren, Fully Homomorphic
with Relative Small Key And Chipertexts Sizes

