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Abstract - Polarization-division multiplexing (PDM) has 
emerged as a next-generation technology to sustain the 
continuous traffic growth, in order to keep up with the future 
of Internet bandwidth requirement and one of the 
fundamental challenges in FMF transmission systems is the 
random inter-modal crosstalk between any two polarization 
modes. Another significant challenge is the large accumulated 
PMD, which can induce significant inter-symbol interference 
(ISI) on each polarized mode signal in PDM systems. The large 
accumulated PMD and an increasing number of multiplexed 
channels need very complex DSP hardware for MIMO 
processing and an urgent efficient solution is needed to 
mitigate the impact of booming internet penetration. We 
compare different mainstream blind and adaptive algorithms 
in order to find the algorithm that have better error 
convergence performance and efficient computational 
complexity. 
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1. INTRODUCTION  

The data rates of optical communication networks have 
been widely increased but at data rates of more than 10 Gb/s, 
the performance of long-haul high-capacity optical fiber 
communication systems is significantly decreased by 
transmission impairments such as residual chromatic 
dispersion (CD), polarization-mode dispersion (PMD), laser 
phase noise and Kerr fiber nonlinearities. Generally, these 
linear impairments are compensated for in the optical 
domain, CD is compensated using dispersion compensating 
fiber or fiber Bragg gratings and PMD is avoided through 
fiber selection or compensated with an optical PMD 
compensator.  

Over the past four decades with the introduction and 
development of  coherent detection, advanced modulation 
formats, and digital signal processing techniques these 
advancements promoted the growth of optical 
communication towards high-capacity and long-distance 
transmissions. With the entire capture of the amplitude and 
phase of the signals using coherent optical detection, the 
compensation and mitigation of the transmission 
impairments can be implemented using the digital signal 
processing in electrical domain this technique is generally 
called equalization which  deals with inter-symbol 
interference in communication systems.  

There is no principal difference between a fiber optic 
channel and e.g. a radio channel in terms of ISI; the received 
baseband signal is distorted in a similar manner in both 
systems, i.e. symbols spread out over neighboring symbols as 
they propagate through the channel. Consequently, equalizer 
techniques used for radio and other systems should in 
essence be viable for fiber optic links as well. However, one 
important difference is that while a radio channel can usually 
be considered as linear, a fiber optic channel exhibits 
nonlinear characteristics which degrades the signal over 
transmission.  

      So digital signal processing in optical communication 
enabled next-generation optical communication networks to 
achieve a performance close to the Shannon capacity limit to 
which we are closer than ever before. Long before we know 
we are touching the Shannon limit in order to solve this 
problem Polarization-division multiplexing (SDM) has 
emerged as a next-generation technology to sustain the 
continuous traffic growth, in order to keep up with the future 
of Internet bandwidth requirement. Among PDM 
technologies, PDM using few-mode fiber (FMF) transmission 
has been extensively explored [1].  and with the help of 
advanced DSP components it offered huge gains in data 
capacities that can be carried over optical networks [2]. 

       In the digital coherent transmission systems, the output 
from the photodiodes are sampled and transformed into the 
discrete signals using high-speed analogue-to-digital 
convertors (ADCs), which can be further processed by the 
DSP algorithms. 

 

Figure (1.1): Schematic of coherent optical 
communication system with digital signal processing. 

In the early era of optical communication networks 
various methods have been developed to increase the 
communications system performance by reducing the effects 
of the ISI. In this project we compare and analyze the 
performance of different algorithms blind and adaptive that 
aid the DSP in 100 Gbps DP-QPSK optical communication 
system in reducing the ISI and the Polarization Mode 
Dispersion from the received de-multiplexed data that 
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reaches from the DP-QPSK coherent receiver after passing 
through long spans of fiber. The 100 Gbps DP-QPSK system 
can be divided into five main parts: DP-QPSK Transmitter, 
Transmission Link, Coherent Receiver, Digital Signal 
Processing, and Detection & Decoding (which is followed by 
direct-error-counting). Digital Signal Processing module 
consists of a DP-QPSK DSP MIMO equalizer module 
compensates for the linear impairments of the fiber through 
the following processes of Electrical signal amplification and 
filtering, Analog to Digital conversion (down sampling), 
Dispersion Compensation, Polarization De-multiplexing, 
Carrier phase estimation, Constellation Diagram Generation 
[15]. 

1.1 Analog to Digital conversion: 

The analog to digital conversion here is basically a down 
sampling process and we have chosen a 2-bit sampling 
however sampling rate can be changed. Number of samples 
per symbol is defined by multiplying the length of the input 
signal divided by the number of symbols. 

1.2 Dispersion compensation: 

Dispersion compensation essentially cancels the chromatic 
dispersion of some optical element(s). However, the term is 
often used in a more general sense of dispersion 
management, meaning the control the overall chromatic 
dispersion of some system. The goal can be, e.g., to avoid 
excessive temporal broadening of ultra-short pulses and/or 
the distortion of signals. Dispersion compensation is applied 
mainly in mode-locked lasers and in telecommunication 
systems, but also sometimes in optical fibers transporting 
light e.g. to or from some fiber-optic sensor [3]. 

1.3 Polarization De-Multiplexing: 

The dual-polarization (DP) transmission scheme has been 
introduced into practical optical communication systems for 
the first time by using recently-developed digital coherent 
receivers. Controlling the state of polarization (SOP) of the DP 
signal in the digital domain, such receivers can de-multiplex 
two polarization tributaries in an adaptive manner. The 
efficient SOP control based on digital signal processing (DSP) 
depends on the phase information of the DP signal, which is 
obtained from coherent detection employing phase and 
polarization diversities. First we will use the Constant 
Modulus Algorithm (CMA) for the blind estimation of the 
filter weights and later use the LMS and RLS algorithms and 
finally compare the performance of the latter two [4]. 

1.3.1 Polarization de-multiplexing using the BLIND CMA 
MIMO algorithm: 

The Jones matrix of the fiber for transmission can be written 
as: 
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Where α and δ denote the power splitting ratio and the 
phase difference between the two polarization modes. The 
SOP of the output signal can be written as [11]: 
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So if we can find the inverse of matrix T, we can do 
polarization de-multiplexing. The constant modulus 
algorithm (CMA) is used first. Following figure shows the DSP 
circuit for channel expression and the corresponding 
equation: 

 

Figure (1.2): DSP circuit for channel 
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The matrix elements are updated symbol by symbol 
according to: 

pxx (n+1) = pxx (n) + μ(1- ‖Ex (n)‖2 ) Ex (n).Ex
*(n)                      1.4 

pxy (n+1) = pxy (n) + μ(1- ‖Ex (n)‖2 ) Ex (n).Ey
* (n)                     1.5 

µ is the step-size parameter and n the number of symbol. The 
p matrix is basically an adaptive FIR filter and we use CMA for 
blind estimation. The initial values for pxx(0) and pyy(0) are:  

pxx(0) = [00…010..00];                                                                    1.6 

pyy(0) = [00…010..00];                                                               1.7 

pxy(0)=pyx(0)= [00…000..00];                                                   1.8 

In our simulation we have chosen a 3-tap FIR filter, however 
the order can be changed. 

1.3.2 Polarization De-multiplexing using the ADAPTIVE 
FD-LMS MIMO algorithm: 

Adaptive MIMO algorithms can be implemented in both time 
domain and frequency domain. However, compared with 
time domain method, frequency domain MIMO equalizer 
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could dynamically compensate the large accumulated DMGD 
and ISI with much lower hardware complexity by taking 
advantage of fast Fourier transform (FFT) and block 
processing. In Few Mode Fiber systems, except for hardware 
complexity, convergence speed is another major 
consideration in the design of adaptive MIMO equalizers. 
Adaptive MIMO equalizer usually uses data-aided adaptive 
frequency domain least mean square (FD-LMS) algorithm for 
the initial convergence[2]. 

The simplicity of the LMS algorithm and ease of 
implementation means that it is the best choice for many 
real-time systems. According to this method, the M tap 
weights of the filter are padded with an equal number of 
zeros, and an N-point FFT is used for the computation, where 

N=2M                                                                                                1.10 

Thus let the N-by-l vector W(k) denote the FFT coefficients of 
the zero-padded, tap-weight vector w(k), as follows 

   ( ) =     [   ( )  0]                                                                  1.11 

Where 0 is the M-by-1 null vector and FFT [ ] denotes fast 
Fourier transfor ation and the frequen y-do ain weight 
ve tor W     is twi e as long as the ti e-do ain weight 
ve tor w     Correspondingly  let U t  denote an  -by-N 
diagonal matrix derived from the input data as follows 

U(k) = diag{ FFT[ u(kM – M) ...   …  u( M – 1), u( M) …   …u( M 
+ M – 1)]}                                                                          1.12 

For the kth block, define the M-by-1 desired response vector  

d(k) = [d(kM), d(kM + 1), ... d{kM + M - 1 )]T  
                                      1.13 

and the corresponding M-by-1 error signal vector 

e(k) = [e(kM), e{kM + 1), . . ., e(kM + M - l)]T                                         1.14 

We may transform the error signal vector e(k) into the 
frequency domain as follows: 

E(k) = FFT[0,e(k)]                                                                          1.15 

Next, recognizing that a linear correlation is basically a 
"reversed" form of linear convolution, we find that applying 
the overlap-save method to the linear correlation yields 

Φ ( ) = first M elements of IFFT [UH(k).E(k)]                       1.16 

Finally we get the tap weight vector of the filter by 

W         W        μ.FFT[ Φ      0]                                          1.17 

Equations (2.11) to (2.17), in that order, define the 
Adaptive LMS algorithm. And the complexity of the algorithm 
with an increase in filter taps is given by (2N+1), where N is 
the number of filter taps. 

1.3.3 Polarization de-multiplexing using the Adaptive 
RLS MIMO algorithm: 

The standard RLS algorithm performs the following 
operations to update the coefficients of an adaptive filter [13]. 

1. Calculates the output signal y (n) of the adaptive 
filter.  

2. Calculates the error signal e (n) by using the 
following equation: 

e(n) = d(n) – y(n).                                                                   1.18 

3. Updates the filter coefficients by using the following 
equation:  

  (  1) =   ( )    ( ). ( )                                                     1.19 

Where w n  is the filter  oeffi ients ve tor and    n  is the 
gain ve tor.    n  is defined  y the following equation   

 ( ) = [ ( ( ).u ( ))   (    u  T( ). ( ).u ( )) ].                        1.20 

Where   is the forgetting factor and P (n) is the inverse 
correlation matrix of the input signal.  
P (n) has the following initial value P (0):  

 (0) = δ-1. [I].                                                                                  1.21 

Where I is an identity vector and δ is the regularization factor. 
The standard RLS algorithm uses the following equation to 
update this inverse correlation matrix.  

 (  1) =  -1.p(n) -  -1   ( ).u  T(n).p(n).                                     1.22 

RLS algorithms calculate J (n) by using the following equation 
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Where N is the filter length and   is the forgetting factor.  

This algorithm calculates not only the instantaneous value e2 
(n) but also the past values, such as e2 (n–1), e2 (n–2)... e2 (n–
N+1). The value range of the forgetting factor is (0, 1]. When 
the forgetting factor is less than 1, this factor specifies that 
this algorithm places a larger weight on the current value and 
a smaller weight on the past values. The resulting E [e2 (n)] of 
the RLS algorithms is more accurate than that of the LMS 
algorithms.  

The LMS algorithms require fewer computational resources 
and memory than the RLS algorithms. However, the 
eigenvalue spread of the input correlation matrix, or the 
correlation matrix of the input signal, might affect the 
convergence speed of the resulting adaptive filter. The 
convergence speed of the RLS algorithms is much faster than 
that of the LMS algorithms. However, the RLS algorithms 
require more computational resources than the LMS 
algorithms. 

1.4 Carrier phase estimation: 
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Phase locking in the hardware domain can be replaced by 
phase estimation in digital domain by DSP [5]. The received 
QPSK signal can be presented by  

E(t) = A exp { j [ θs(t) + θs(t) ] }                                               1.26 

We have used the following algorithm to estimate the phase 
of the QPSK signal in digital domain: 

 

Figure (1.3): Visual explanation of Carrier Phase 
Estimation 

1.5 Further Analysis into Adaptive LMS variants  

1.5.1 Least Mean Square (LMS) algorithm: 

It has become the most frequently used algorithm for the 
training of adaptive finite impulse response (FIR) filters. 

The LMS minimises the cost function J(k) =0.5. e2 (k), and is 
given by 

e(k) = d(k) – xT (k).w(k)                                                              1.27 

 (    1) =  ( )   μ. ( ).x( )                                                     1.28 

Where e(k) denotes the instantaneous error at the output of 
the filter  d    is the desired signal x      [x   −    ... x   −   ] 
T is the input signal vector, N is the length of the filter, (·) T is 
the vector transpose operator, and w(k) = [w 1 (k),...,w N (k)] 
T is the filter  oeffi ient weight  ve tor. The para eter μ is 
the step size (learning rate), which is critical to the 
performance, and defines how fast the algorithm is 
converging. The main drawback of the "pure" LMS algorithm 
is that it is sensitive to the scaling of its input. This makes it 
very hard to choose a learning rate µ that guarantees stability 
of the algorithm. Below here we discuss various variants of 
LMS that offer better performance.  

1.5.2 Variable Step Size LMS algorithms: 

Normalised LMS (NLMS) is a variant of the LMS which 
basically normalises the step size based on the power of the 
signal in the filter memory in order to improve stability and 
convergence. The NLMS update equation is given by  

w(n+1) = w(n) + [ β   (𝜖   ‖x( )‖2 ) ] .e(n).x(n).                   1.29 

w(𝑛 + 1) = w(𝑛) + 𝜇. 𝑒p (𝑛).x(𝑛)                                                 1.30 

𝑒𝑝 ( 𝑛 ) = 𝑑 ( 𝑛 ) − x𝑇 (𝑛).w(𝑛 + 1)                                              1.31 

Here 𝜖 is a s all “regularization”  onstant  added to avoid 
division by 0 for small values of input or signal power is too 
low 

1.5.3 Gradient Adaptive Step-Size (GASS) Algorithms 

The standard LMS uses a fixed step size  μ  and hen e there is 
a trade-off between speed of convergence and steady state 
error variance as previously discussed. Ideally we wish to 
have a large step when the error is large and then reduce the 
step size as the estimate approaches the true values, thus 
allowing for both fast convergence and small steady state 
error. Variable step size algorithms aim to simultaneously 
minimize the cost function with respect to the weights as well 
as minimising the cost function with respect to the step size. 
The update equation for the step size is given by equation 
μ n    in which ψ(𝑛) can take various forms [6]. Step Size 
update equation:   

μ(  1) = μ( ) – [ ρ .∇μ .J( ) ] 

      = μ( ) – ρ. ( ).x( ). ψ(𝑛) 

     = μ( )   ρ. ( ).xT(k). ψ(𝑛)                                               1.32 

Where (ρ) is the step size learning rate) 

Weight update equation of conventional LMS:  

 (    1) =  ( )   μ. ( ).x( )                                                   1.33 

A gradient adaptive learning rate μ n   an  e introdu ed into 
the LMS algorithm  

a.) Benveniste’s is rigorous and evaluates the sensitivity  

ψ (𝑛) = [I − (𝜇(𝑛 − 1) × x(𝑛 − 1)xT (𝑛 − 1))] ψ(𝑛 − 1)                   
+ 𝑒(𝑛 − 1).x(𝑛 − 1) 1.34 

b.) Ang & Farhang algorithm is based on a recursive 
calculation of ψ fro  Benveniste’s Equation in the 
form 

ψ(𝑛) = 𝛼.ψ(𝑛 − 1) + 𝑒(𝑛 − 1).x(𝑛 − 1)  𝛼 ∈ (0,1).     1.35 

c.) Mathews’ algorith  is a si plifi ation of the 
algorith   y Farhang and Ang  where α   0  that is  it 
uses noisy instantaneous estimates of the gradient, 
resulting in the learning rate update 

ψ(𝑛) = 𝑒(𝑛 − 1)x(𝑛 − 1)                                                 1.36 

The term in the square brackets for the Benveniste algorithm 
represents a time varying low pass filter which smoothes the 
instantaneous gradient 𝑒(𝑛 −   𝐱(𝑛 −    and hen e in reases 
robustness to statistical variations in the input. Ang & 
Farhang is a simplification in which the low pass filter term is 
fixed and Matthews & Xie is the same as Ang & Farhang for 
the case when 𝛼 = 0, i.e. the filter time constant is zero and so 
there is no smoothing. This is the least robust meaning a 
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small step (𝜌) will be necessary but its advantage is in its low 
computational complexity [9]. 

1.5.4 Introducing robustness into NLMS: Adaptive 
Regularization of NLMS Algorithm 

The purpose of 𝜖 in NLMS update equation is to prevent the 
step size from being too large (and hence causing instability) 
when the signal power in the filter  e ory  ‖x 𝑛 ‖ 2   is 
s all. It also prevents divide  y zero errors when ‖x 𝑛 ‖ 2   
0. By adapting 𝜖 with time, we can make the gain of the NLMS 
adaptive and hence more optimal. We choose an update 
equation for 𝜖 such that the cost function is minimized. 

𝜖(𝑛 + 1) = 𝜖(𝑛) – 𝜌.∇ 𝜖 𝐽(𝑛).                                                        1.37 

Where (𝜌) is the step for the adaption of regularisation 
factor. The weight update formula is given by 

w(𝑛 + 1) = w(𝑛) + [ 1 / (𝜖(𝑛)   ‖x(𝑛)‖2) ] e(n).x(n)            1.38 

The Adaptive Regularization factor 𝜖 update equation  

𝜖(𝑛 + 1) = 𝜖(𝑛) – 𝜌.𝜇. [ (𝑒(𝑛)𝑒(𝑛 − 1)x𝑇 (𝑛)x(𝑛 − 1))   (𝜖(𝑛  − 1)   
x𝑇 (𝑛 − ………………1)x(𝑛 − 1)) ]       1.39 

1.5.5 Comparing the Complexity of Benveniste and the 
Adaptive Regularisation Algorithm.    

Digital Signal Processing (DSP) algorithms are mostly 
implemented on special purpose Digital Signal Processors. 
Recently, advanced hybrid microcontrollers and Field 
Programmable Gate Arrays (FPGAs) are also evolving as the 
suitable platforms for realizing DSP algorithms. Here in table 
below we compare the algorithms for the number of 
multipliers they need for the implementation of algorithm. 

 Addition   Multiplication Division 

Benveniste Weight update q 2q 0 

Benveniste μ update 4q 2q2 + 3q + 2 0 

AR weight update 2q 2q + 1 1 

AR 𝜖  update 2q 2q + 4 1 

 

Table  1. Comparison of complexity between Benveniste 
and AR algorithm. 

2. Simulation and results  

The signal generated by an optical DP-QPSK Transmitter is 
then propagated through the fiber loop where dispersion and 
polarization effects occur. It then passes through the 
Coherent Receiver and into the MATLAB DSP component for 
post processing where several scripts are used to reduce the 
effects of ISI and PMD induced by the fiber non-linear 
impairments. The fiber dispersion is compensated using a 
simple transversal digital filter, and the adaptive polarization 
de-multiplexing is realized by applying the constant-modulus 
algorithm (CMA), Adaptive Least Mean Squares (LMS) 
algorithm and Adaptive Recursive Least Square (RLS) 
algorithm. A modified Viterbi-and-Viterbi phase estimation 

algorithm is then used to compensate for phase and 
frequency mismatch between the transmitter and local 
oscillator (LO). After the digital signal processing is complete, 
the signal is sent to the detector and decoder, and then to the 
BER Test Set for direct-error-counting. Even though RLS 
equalizer converges quickly than the LMS equalizer it 
requires much more multipliers for an increase in number of 
filter taps. We further simulated different types of Gradient 
Adaptive Step Size LMS variants to achieve a faster 
convergence rate at the same time maintaining the 
complexity of the system. Finally we compared GASS 
algorithms with custom NLMS variant which has an adaptive 
regularization factor that adapts to the input signal which 
provided better convergence performance than the GASS 
algorithms while maintaining similar complexity of pure LMS. 

 

Figure 2. Schematic of 100 Gbps DP-QPSK optical 
communication system with DSP in optisystem. 

2.1 DSP Equalizer using Blind CMA algorithm: 

 

Figure (2.1): DSP Equalizer using blind CMA algorithm 

After receiving the data from the fiber, optical DP-QPSK 
receiver De-multiplexes the ISI induced noisy multiplexed 
data and sends the individual data streams to the MATLAB-
OPTISYSTEM DSP component where it runs the user defined 
scripts to reduce the noise error. First the data individual 
data streams are down sampled, then sent to Dispersion 
Compensation module to cancel the Chromatic Dispersion 
error indu ed  y the fi er non linearity. Afterwards it’s sent 
into the Polarization De-multiplexing module to compensate 
the error induced by phase delay that occurs over the fiber 
length using the Constant Modulus Algorithm (CMA) which is 
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used for the estimation of filter weights. Finally the filtered 
data is sent into Carrier phase Estimation module to perform 
Phase lock between the X and the Y polarization to further 
decrease phase differences between a received signal's wave 
and the receiver's local oscillator. And the constellation 
diagrams after each module operation are generated and we 
can observe that the error levels reached the optimum value. 

2.2 DSP Equalizer using Adaptive FD-LMS algorithm: 

 

Figure (2.2): Constellation Diagrams of processed data DSP 
MIMO Equalizer using Adaptive FD-LMS algorithm. 

In this simulation every parameter is same as the above with 
the exception of Polarization Multiplexing done by the 
Adaptive Frequency Domain LMS algorithm which estimates 
the filter weights by adaptive converging them toward 
desired optimum values and we can observe that the error in 
the data stream drops to optimum values right after the 
Polarization De-multiplexing as carrier recovery and phase 
matching between the transmitter and local oscillator (LO) is 
already done by adaptive LMS algorithm in Polarizing De-
multiplexing module. And we can see observe that 
constellation diagram of Adaptive LMS aided DSP is more 
concentrated than the CMA aided DSP. 

2.3 DSP Equalizer using Adaptive RLS algorithm: 

 

Figure (2.3): DSP Equalizer using Adaptive RLS algorithm. 

In this simulation Adaptive LMS algorithm will be used in the 
Polarization De-multiplexing module which estimates the 
filter weights by adaptive converging them toward desired 
optimum values and we can observe that the error in the data 
stream drops to optimum values right after the Polarization 
De-multiplexing as carrier recovery is already done by 

adaptive RLS algorithm in Polarizing De- multiplexing 
module. And we can see observe that constellation diagram of 
Adaptive RLS aided DSP is similarly concentrated as the LMS 
aided DSP and more than concentrated than the Blind CMA 
version. 

2.4 Comparing the Adaptive Algorithms Error 
convergence Performance: 

 

Figure (2.4): Error convergence comparison of LMS and 
RLS algorithm. 

In the above graphs we can observe that the RLS aided 
DSP can achieve faster convergence rate toward the optimum 
value after taking few samples compared to the LMS aided 
DSP which requires more samples to converge. In the Optical 
communication it is required that the system compensate the 
error at faster rate in order to avoid data loss. So here RLS is a 
clear winner in this competition.  

2.5 Analyzing the LMS In-Phase, Quadrature and 
constellation diagrams of input and output data: 

 

Figure (2.5): Visualization of In-Phase, Quadrature and 
constellation diagram components of LMS DSP system. 

In this graph we graphically compare the Adaptive LMS In-
Phase and Quadrature components of the error, output and 
the desired signals in a single subplot and can infer that the 
error gradually decreases after taking in the few hundred 
samples so by that time the filter weights will be adaptively 
adjusted by the LMS algorithm to the desired values. 
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2.6 Analyzing the RLS In-Phase, Quadrature and 
constellation diagrams of input and output data: 

 

Figure (2.6): Visualization of In-Phase, Quadrature and 
constellation diagram components of LMS DSP system. 

In this graph we graphically compare the adaptive RLS In-
Phase and Quadrature components of the error, output and 
the desired signals in a single subplot and can infer that the 
error gradually decreases after taking in the few tens of 
samples so by that time the filter weights will be adaptively 
adjusted by the RLS algorithm to the desired values. And once 
again we can infer with confidence that the adaptive RLS 
algorithm convergence rate to that of the LMS algorithm is 
faster and superior. 

2.7 Comparison of complexity between LMS and RLS: 

 

Figure (2.7): Hardware complexity comparison of LMS and 
RLS. 

Even though the convergence rate of the Adaptive RLS 
algorithm is higher than the LMS algorithm the number of 
complex multiplications required for the number increasing 
filter taps exponentially. Whereas the adaptive LMS algorithm 
requires far less multiplication cycles for the increasing Filter 
weights. So even if the RLS provides better convergence rate 
it’s pra ti ality is endangered with  o plexity it produ es to 
compensate the error. So here LMS is better equipped to 
compensate the huge amount of error with comparatively 
less complexity and slower convergence rate. So further 
simulation are done on the LMS variants which offer better 
convergence rate with similar complexity structure. 

2.8 Error performance comparison of LMS and NLMS 
algorithms: 

 

Figure (2.8): Error performance comparison of LMS and 
NLMS. 

The above figures compares the squared error performance 
of LMS an NLMS algorithm and we know that higher step 
sizes (𝜇) can lead to faster convergence rate.  

Even with step size (𝜇) = 0.210 NLMS algorithm convergence 
performance is worse than that of the pure LMS with step 
size (𝜇) = 0.0100. Due to the normalization of step size in 
NLMS variant its effective step size varies inversely over time 
to the signal power so for low power inputs the effective (𝜇) 
of NLMS will be much smaller and need more samples before 
it can converge to the optimum value although it remains 
stable, but its convergence rate needs improvement. 

2.9 Error performance comparison of GASS and LMS 
algorithms: 

 

Figure (2.9 a): Weight Error convergence performance 
comparison of GASS and LMS. 
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Figure (2.9 b): Weight Error convergence performance 
comparison of GASS and LMS. 

The above figures compares the three GASS algorithms 
with their optimal parameters and the standard LMS for two 
different values of 𝜇 and we can observe the filter weight 
convergence of each variant. We already know that an 
adaptive LMS algorithm with higher step size (𝜇) converges 
faster than the one with lower step size. From the graphs we 
can infer that the LMS with (𝜇) = 0.1 has converged faster 
than the LMS variant with (𝜇)=0.01. And it shows that 
Benveniste and Ang & Farhang algorithms to significantly 
outperform the standard LMS in terms of both convergence 
speed and steady state error, Benveniste algorithm which is 
most efficient of the current batch is further compared with 
modified variant of NLMS. 

2.10 Performance comparison of Benveniste and 
Adaptive Regularization variant of NLMS algorithm: 

 

 

Figure (2.10): Performance comparison of Benveniste and 
Adaptive Regularization variant of NLMS algorithm over 

evolution of weights and Mean Square Convergence Error. 

From above graphs we can observe that the evolution filter 
weights (b0, b1) adapted by Adaptive Regularisation variant 
of NLMS converges to their desired value at faster rate than 
the Benveniste algorithm and in the comparison of Mean 
Square Convergence Error we can clearly infer that Adaptive 
Regularization variant converges rapidly to optimum value 
with an intake of just around 60 samples whereas Benveniste 
algorithm needed over 200 samples to converge to same 
optimum value. Finally we can infer that Adaptive 
Regularization of NLMS offers better performance than its 
counterpart Benveniste with fewer intake of data samples. 

2.11 Complexity comparison of Benveniste and Adaptive 
Regularization variant of NLMS algorithm: 

 

Figure (2.11): Complexity comparison of Benveniste and 
Adaptive Regularization variant of NLMS algorithm over 

evolution of weights and Mean Square Convergence Error. 

From above graphs we can observe that the number of 
complex arithmetic computations required for the increasing 
number of filter taps is more for the Benveniste algorithm 
and comparatively lesser for the Adaptive Regularization 
algorithm. So here Adaptive Regularization algorithm is 
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better equipped to compensate the huge amounts of error 
with comparatively less complexity and faster convergence 
rate than the Benveniste algorithm. 

3 .Conclusion 

As we look back on our objective at the starting of the 
report we accomplished and generated the respective results. 

Our first objective of comparing the performance of Blind 
CMA, Adaptive LMS and Adaptive RLS MIMO equalizers by 
using the distorted de-multiplexed has been accomplished by 
processing the data individually with above algorithms and 
we observed the error convergence performance of RLS 
equalizer is comparatively better than the LMS but in the 
complexity factor RLS required more multipliers for a the 
increasing amount filter taps. So the LMS was efficient choice. 

Then the Adaptive LMS algorithm is further analysed 
compared by simulating Gradient Adaptive Step Size (GASS) 
algorithms and observed that optimal Benveniste and Ang & 
Farhang algorithms performed better than the pure LMS 
variant. 

Finally we simulated the Mean Square Error Convergence 
performance, evolution of weights and the hardware 
complexity comparison of both the Benveniste and Adaptive 
Regularization algorithm and observed that the evolution 
filter weights (b0, b1) adapted by Adaptive Regularisation 
variant of NLMS converged to its desired value at faster rate 
than the Benveniste algorithm. In the comparison of Mean 
Square Convergence Error we can clearly infer that Adaptive 
Regularization NLMS variant converged rapidly to optimum 
value with an intake of just around 60 samples whereas 
Benveniste algorithm needed over 200 samples to converge 
to same optimum value. And in hardware complexity 
comparison number of complex arithmetic computations 
required for the increasing number of filter taps is more for 
the Benveniste algorithm and comparatively lesser for the 
Adaptive Regularization algorithm. Finally we can infer that 
Adaptive Regularization of NLMS offers better error 
convergence performance and efficient computational 
complexity than its counterpart Benveniste with fewer intake 
of data samples. 
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