
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3019

Database Partitioning Using Frequent Item Set for Getting Optimal

Solution

 Shraddha Bhor1, Jyotsna Gavali2, Rekha Malviya3

1,2,3 Student, Computer Department, Dr. D. Y. Patil Institute of technology, Pimpri, Pune

---***--

Abstract: We present an idea integrating frequent pattern
clustering for finding an finest database partition. First, the
Apriori algorithm is used to find out weighted frequent
patterns related to a operation profile. Depending on the
weighted frequent patterns, we build up two techniques
designed for division of database: the candidate method and
the optimal method. The finest technique contain a branch-
and-bound algorithm and costs in each step of combining
attributes can be taken into account until an optimal solution
is obtained. Furthermore, we refined the optimal method for
expediting the execution by minimizing the exploration space.
Finally, results show that the given method performs the
highest among all previous methods.

Key Words: Data partitioning, Frequent itemsets, Apriori
Algorithm, Cosine Similarity, Branch and Bound technique.

1. INTRODUCTION

In a relational database scheme, efficiency is dominant while
a operation is processed. For accessing databases, a huge
quantity of data can be take out in a operation, but a few of
them can be inadequate in handing. consequently, a number
of approaches for example indexing and data separation
have been proposed for accessing databases more effectively
and reducing disk input/output (I/O).

In common, database design can be separated into rational
and physical database design. For logical database design, a
database administrator choose the text of the record at an
conceptual level or generate the abstract scheme. For
physical database design, the record administrator also
decides how the data must be characterize in database. Once
database design is completed, the database schema would
work for a long time until the schema must be modified.
Therefore, determine an optimal database design is critical
to the performance of database. Application that involve
accessing data in structure-variant manner are not suitable
for using a database.

Here , we presents an idea for detecting an finest partition.
First, the modified Apriori algorithm and cosine similarity
are merged to find out weighted frequent patterns. The
modified Apriori algorithm is familiar with finding out the
combination of pattern frequently accessed in transactions.
Cosine similarity is used to calculate the similarity of pattern,
which are them fused into a weighted frequent pattern. after
that a branch and bound algorithm is utilized to create an
finest database division according to a cost structure.

2. RELATED WORK

This paper gives AutoPart,an algorithm that mechanically
partition database tables to minimize in order access to prior
knowledge of a representative workload. The scheme is
indexed using a fraction of the space required for indexing
the original schema. This experiment can be AutoPart in the
context of the Sloan Digital Sky Survey database, and a real-
world astronomical database, running on SQL Server 2000 is
used for partitioning.[1]

This paper highlighted on issues (a) the importance of taking
an integrated approach to automated physical design and (b)
the scalability of the techniques. Techniques that enable a
scalable solution to the integrated physical design problem
of indexes, materialized views, vertical and horizontal
partitioning for both performance and manageability. The
paper focus on horizontal partitioning with on single-node
partitioning[2]

The paper gives an approach integrating frequent pattern
clustering and branch – and bound algorithms for finding
an optimal database partition. Apriori algorithm and cosine
similarity are used to determine weighted frequent patterns
according to a transaction profile.[3]

3. PROPOSED SYSTEM

1. List out popular Queries on Database for
grocery chain application

Popular SQL queries need to be extracted from the
application code and they need to be analyzed for
performance bottleneck. List of database columns and their
tables need to be extracted.

2. Create Transaction Profile

Each query is assigned a transaction id and its columns are
marked with 1/0. Transaction profile helps us identify
common columns occurring in all the queries.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3020

3. Apply Apriori algorithm

The Apriori algorithm is designed for removal frequent
object sets in a transactional database. Here, we apply this
algorithm to learn the grouping of features commonly
accessed by transactions. certain columns are referred in
maximum of queries, we extract such columns and find their
weights.

4. Detect Weighted Frequent Patterns

In the first process, we combine the Apriori algorithm and
cosine similarity to find out weighted frequent patterns. In
the predictable Apriori algorithm, the prototype is used to
confirm whether the model is common. though, here we
make use of the frequency of a query and cosine similarity as
the weighted support of a pattern to validate if the pattern is
weighted frequent. First, the original formula of cosine
similarity used between two objects is modified for use
among n objects as follows:

weighted support of a pattern is then defined as follows:

5. Vertical Partitioning

Vertical partitioning involves dividing a table into multiple
fragments in which each fragment contains the same number
of rows but fewer columns compared with the original table.
For vertical partitioning, many methods are used for
splitting an original table because many combinations of
attributes can be applied for vertical partitioning. For
example, we can split a three-attribute table {a, b, c} into five
combinations of attributes i.e { (a),(ab,c),(a,bc),(a,b,c),(ac,b)}

6. Compare Results of with partitioning and
without partitioning

Fig-1: Proposed System Architecture

To estimate the performance of whole unit, We have to
install resource monitoring and load balancing tools on the
test bed and evaluate the need of available resources such as
Storage Pricing, CPU pricing, Request Pricing and Storage
Management Price. The solution should be able to
geographically distributed and accommodate a high number
of customers and brokers.

4. ALGORITHM USED

1. Modified Apriori Algorithm

 Let us consider the database D.

 Let us assume minimum support as 2.

 For 1-Frequent item set L1

 Firstly, scan all transactions to get frequent
1-itemset L1 which contains the items and
their support count and the transactions
ids that contain these items, and then
eliminate the candidates that are
infrequent or their support are less than
the minimum support.

Itemset Support Transaction ID set

Apple 6 {1,4,5,7,8,9}

Milk 7 {1,2,3,4,6,8,9}

Bread 6 {3,5,6,7,8,9}

Crisps 2 {2,4}

Beer 2 {1,8}

2-Frequent itemset c2

 The next step is to generate candidate 2-
itemset from L1. To get support count for
every itemset, split each itemset in 2-
itemset into two elements then use l1 table
to determine the transactions where you
can find the itemset in, rather than
searching for them in all transactions.

 For instance, let’s acquire the initial item
(Apple, Milk), in the original Apriori we
scan all 9 transactions to find the item
(Apple, Milk); but in our proposed
modified algorithm we will split the item
(Apple, Milk) into Apple and Milk and get
the minimum support between them using
L1, here Apple has the smallest minimum
support .After that we search for itemset
(Apple, Milk) only in the transactions 1, 4, 8
and 9.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3021

C2 is shown as:

L2 is shown as:

Itemset Support Minimum Transaction ID set

{Apple, Milk} 4 Apple {1,4,8,9}

{Apple, Bread} 4 Apple {5,8,9}

{Apple, Beer} 2 Apple {1,8}

{Milk, Bread} 5 Bread {3,6,8,9}

{Milk, Crisps} 2 Crisps {2,4}

{Milk, Beer} 2 Beer {1,8}

3-Frequent Itemset C3& L3 are as follows:

Itemset Support Minimum Transaction ID set

{Apple, Milk, Bread} 2 {Apple, Milk} {8,9}

{Apple, Milk, Beer} 2 {Milk, Beer} {1,8}

1. Weight Calculation for patterns

First, the original formula of cosine similarity used between
two objects is modified for use among n objects as follows:

The weighted support of a pattern is then defined as follows

Mathematical Model:

(a) Let S be the system.

S={I}

Identify I as input, Set of Queries

I={i1,i2,i3…in}

I1,i2,i3…in -> ‘n’ number of food items

S={I}

(b) Identify P as process

P={F,D}

Where,

F -> Frequent itemsets from database using
modified apriori.

D -> Partitions of Database using frequent
itemsets.

S={I,P}

(c) Identify O as Output.

O={p,q}

Where,

P->Time complexity to execute querry on
partitioned database.

Q->Time complexity to execute querry on
non-partitioned database.

S={I,P,O}

(d) Identify A as case of success.

A={J,K}

J ->Querries are valid

K -> Time complexities of partition is
greater than non-partition database.

S={I,P,O,A}

(e) Identify F as case of success.

F={L,M}

L ->Querries are valid

M -> Time complexities of partition is not greater
than non-partition database.

S={I,P,O,A,F}

Fig - 2: Project Flow

Itemset Support Minimum Transaction ID set

 {Apple, Milk} 4 Apple {1,4,8,9}

{Apple, Bread} 4 Apple {5,8,9}

{Apple, Crisps} 1 Crisps {4}

{Apple, Beer} 2 Apple {1,8}

{Milk, Bread} 5 Bread {3,6,8,9}

{Milk, Crisps} 2 Crisps {2,4}

{Milk, Beer} 2 Beer {1,8}

{Bread, Beer} 1 Bread {8}

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3022

5. IMPLEMENTATION DETAILS

The proposed system is supported to android studio 1.0
which provides tools for android development and
debugging. An open source SDK used for hybrid mobile

APP development like, android and iOS. Software
programmer bulid application for mobile devices using
Javascript and HTML6. Node. jsused for developing a diverse

variety of server tools and applications which are open
source, cross-platform, Javascript runtime environment. The
systems GUI was designed using java JSP. Core Technologies
used were Java, JSP. The overall development was done in
the Eclipse Juno and for DB we used MY SQL GUI browser.

Apriori algorithm and cosine similarity is used to determine
weighted frequent patterns to ascertain the combination of
attributes. Figure shows the item set combination of level
first apriori algorithm.

Fig -3: Level 1st Apriori

Item set combination of level 6 apriori is shown below.

Fig - 4: Level 6th Apriori

Figure shows the comparison between the simple apriori
and modified apriori. Time taken by apriori algorithm for
making the combination of the itemset is reduced in
modified apriori algorithm.

Figure 5: Apriori Algo Comparison Graph

After making all the combination of itemset the time
required for searching particular combination without
partitioning is greater than that of with partitioning as
shown in below figure.

Fig - 6: Partitioning Comparison Graph

6. CONCLUSIONS

We propose an approach integrating frequent pattern

clustering for finding an optimal database partition. The
presented system of database partitioning will be more
efficient to access for bulk database. It will work out the time
complication of partitioned and without partition database.

FUTURE SCOPE:

With the of this proposed model we will be able to get data
in less execution time, this research work has not taken the
following aspects into account:

 Generation of only user interested association rule.

 Setting up of different minimum support values of
various items present in the database.

REFERENCES

[1] Stratos Papadomanolakis, Anastassia Ailamaki, "Auto
Part: Automating Schema Design for Large Scientific
Databases Using Data Partitioning",16th International
Conference on Scientific and Statistical Database
Management (SSDBM).Santorini Island, Greece. June 21-
23, 2004.

[2] Sanjay Agrawal,Vivek Narasayya,"Integrating Vertical
and Horizontal Partitioning into Automated Physical
Database Design",SIGMOD 2004, June 13–18, 2004,
Paris, France.

[3] Yin- Fu Huang, Chen JuLai "Integrating frequent pattern
clustering and branch- and bound approaches for data
partitioning", Information Sciences328(2016)288–301

