
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3781

Sharing of Data through Distributed Accountability in the Cloud

Archana Karnik K.M

Assistant Professor ,Bachelor of Computer Applications,AIMS&R,Karnataka,India

---***---
Abstract - Accountability is an important aspect of any
computer system. It assures that every action executed in the
system can be traced back to some entity. Accountability is
even more crucial for assuring the safety and security. A major
feature of the cloud services is that users’ data are usually
processed remotely in unknown machines that users do not
own or operate. Cloud computing enables highly scalable
services to be easily consumed over the Internet on an as-
needed basis. This paper proposes a Third party auditor(TPA)
between data owner and cloud service provider(CSP) which
reduce the burden of data owner to audit the data in the cloud
and it also make the data owner free from worrying about the
data lose in cloud storage . To highlight the security purpose a
novel highly decentralized information accountability
framework is introduced. When any access is made to the
user’s data will be trigger the authentication and automated
logging control to JARs. A distributed auditing mechanism is
used to control the users. To strengthen user’s control, the
framework also provide distributed auditing mechanism.

Key Words: Cloud computing,TPA,CSP,CIA,

Framework,JAR files,open SSL

1.INTRODUCTION

Cloud computing is the access to computers and their
functionality via the Internet or a local area network. Users
of a cloud request this access from a set of web services that
manage a pool of computing resources (i.e. machines,
network, storage, operating systems, application
development environments, application programs). When
granted, a fraction of the resources in the pool is dedicated to
the requesting user until he or she releases them. It is called
"cloud computing" because the user cannot actually see or
specify the physical location and organization of the
equipment hosting the resources they are ultimately allowed
to use the data processed on clouds are often outsourced,
leading to a number of issues related to accountability,
including the handling of personally identifiable information.
Such fears are becoming a significant obstacle to the wide
acceptance of cloud services. Accountability is the obligation
to act as a responsible steward of the personal information
of others, to take responsibility for the protection and
appropriate use of that information beyond mere legal
requirements, and to be accountable for any misuse of that
personal information. Associated with the accountability
feature, two distinct modes for auditing are developed: push
mode and pull mode. The push mode refers to logs being
periodically sent to the data owner or stakeholder while the

pull mode refers to an alternative approach whereby the
user can retrieve the logs as needed.

2 LITERATURE SURVEY

 Cloud computing has raised a range of important
privacy and security issues. Such issues are due to the fact
that, in the cloud, users’ data and applications reside at least
for a certain amount of time on the cloud cluster which is
owned and maintained by a third party. In [1], Authors
proposes a fully functional identity-based encryption scheme
(IBE).This system is based on bilinear maps between groups.
The Weil pairing on elliptic curves is an example of such a

map. For the security of this IBE system, cipher text based
encryption is chosen. The scheme has chosen cipher text
security in the random oracle model assuming a variant of
the computational Difie-Hellman problem. In[2], Authors
propose the Security Assertion Markup Language (SAML)
standard defines a framework for exchanging security
information between online business partners. This
document provides a technical description of SAML V2.0.
In[5], Authors present an open framework for foundational
proof-carrying code (FPCC). It allows program modules to be
specified and certified separately using different type
systems or program logics. Certified modules (i.e., code and
proof) can be linked together to build fully certified systems.
The framework supports modular verification and proof
reuse. In[8], Authors used a signed application descriptor file
instead of X.509 to authenticate a portable application code,
such as java archive (JAR) file.

3. POSSIBLE ATTACKS TO THE FRAME WORK

 The attackers may have sufficient Java programming
skills to disassemble a JAR file and Prior Knowledge of the
CIA architecture.

3.1 Copying attack

 The most intuitive attack is that the attacker copies
entire JAR files. The attacker may assume that doing so
allows accessing the data in the JAR file without being
noticed by the data owner. However, such attack will be
detected by auditing mechanism that is every JAR file is
required to send log records to the harmonizer. Even if the
data owner is not aware of the existence of the additional
copies of its JAR files, he will still be able to receive log files
from all existing copies. Thus, the logger component
provides more transparency than conventional log files
encryption; it allows the data owner to detect when an

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3782

attacker has created copies of a JAR, and it makes offline files
inaccessible.

3.2 Disassembling attack

 Another possible attack is to disassemble the JAR
file of the logger and then attempt to extract useful
information out of it or spoil the log records in it. Given the
ease of disassembling JAR files, this attack poses one of the
most serious threats to the architecture. Since an attacker
cannot be prevented to gain possession of the Jars, strong
cryptographic schemes are applied to preserve the integrity
and confidentiality of the logs. Since the encryptions are
used, the attacker will not be able to decrypt any data or log
files in the disassembled JAR file. Even if the attacker is an
authorized user, he can only access the actual content file but
he is not able to decrypt any other data including the log files
which are viewable only to the data owner. From the
disassembled JAR files, the attackers are not able to directly
view the access control policies either, since the original
source code is not included in the JAR files.

3.3 Man-in-the-middle attack

 An attacker may intercept messages during the
authentication of a service provider with the certificate
authority, and reply the messages in order to masquerade as
a legitimate service provider. There are two points in time
that the attacker can replay the messages. One is after the
actual service provider has completely disconnected and
ended a session with the certificate authority. The other is
when the actual service provider is disconnected but the
session is not over, so the attacker may try to renegotiate the
connection. The first type of attack will not succeed since the
certificate typically has a time stamp which will become
obsolete at the time point of reuse. The second type of attack
will also fail since renegotiation is banned in the latest
version of OpenSSL and cryptographic checks have been
added.

4. CLOUD INFORMATION ACCOUNTABILITY

 The proposed Cloud Information Accountability
framework conducts automated logging and distributed
auditing of relevant access performed by any entity,
carried out at any point of time at any cloud service
provider. It has two major components: logger and log
harmonizer.

4.1 CIA Frame work

 The Cloud Information Accountability framework
proposed in this work conducts automated logging and
distributed auditing of relevant access performed by any
entity, carried out at any point of time at any cloud service
provider. It has two major components: logger and log
harmonizer. The logger is the component which is strongly
coupled with the user’s data, so that it is downloaded when
the data are accessed, and is copied whenever the data are

copied. It handles a particular instance or copy of the user’s
data and is responsible for logging access to that instance or
copy. The log harmonizer forms the central component
which allows the user access to the log files.

Fig 4.1 Architecture of the cloud information acccountability
framework

 The overall CIA framework, combining data, users,
logger and harmonizer is sketched in Fig. 4.1 At the
beginning, each user creates a pair of public and private keys
based on Identity-Based Encryption [1] (step 1 in Fig.4.1).
This IBE scheme is a Weil-pairing-based IBE scheme, which
protects us against one of the most prevalent attacks to our
architecture. The JAR file includes a set of simple access
control rules specifying whether and how the cloud servers,
and possibly other data stakeholders (users, companies) are
authorized to access the content itself. Then, he sends the
JAR file to the cloud service provider that he subscribes to.
To authenticate the CSP to the JAR (steps 3-5 in Fig.4.1),
OpenSSL based certificates are used, wherein a trusted
certificate authority certifies the CSP. In the event that the
access is requested by a user, SAML-based authentication [2]
are used, wherein a trusted identity provider issues
certificates verifying the user’s identity based on his
username.
Once the authentication succeeds, the service provider (or
the user) will be allowed to access the data enclosed in the
JAR. Depending on the configuration settings defined at the
time of creation, the JAR will provide usage control
associated with logging, or will provide only logging
functionality. As for the logging, each time there is an access
to the data, the JAR will automatically generate a log record,
encrypt it using the public key distributed by the data owner,
and store it along with the data (step 6 in Fig.4.1). The
encryption of the log file prevents unauthorized changes to
the file by attackers. The data owner could opt to reuse the
same key pair for all JARs or create different key pairs for
separate JARs.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3783

In addition, some error correction information will be sent to
the log harmonizer to handle possible log file corruption
(step 7 in Fig.4.1). To ensure trustworthiness of the logs,
each record is signed by the entity accessing the content.
The encrypted log files can later be decrypted and their
integrity verified. They can be accessed by the data owner or
other authorized stakeholders at any time for auditing
purposes with the aid of the log harmonizer (step 8 in
Fig.4.1).
 Proposed framework prevents various attacks such
as detecting illegal copies of user’s data. This work is
different from traditional logging methods which use
encryption to protect log files. With only encryption, the
logging mechanisms are neither automatic nor distributed.
They require the data to stay within the boundaries of the
centralized system for the logging to be possible, which is
however not suitable in the cloud.

5 LOGGING MECHANISMS

 A logger component is a nested Java JAR file which
stores a user’s data items and corresponding log files. The
proposed JAR file consists of one outer JAR enclosing one or
more inner JARs. The main responsibility of the outer JAR is
to handle authentication of entities which want to access the
data stored in the JAR file as shown in the fig 5.2. Each inner
JAR contains the encrypted data, class files to facilitate
retrieval of log files and display enclosed data in a suitable
format, and a log file for each encrypted item as shown in Fig
5.1.

5.1 Inner jar

 Figure 5.1 shows inner JAR data process, it has
encrypted data and log record . The log record can be
generated as pure log and access log where pure log have
only the general information about every access made by
users in the cloud and access log have general information
and also the time duration about the access.

Fig 5.1 Inner JAR

5.2 Outer jar

 Figure 5.2 shows the authentication process made in
the outer JAR. It will authenticate the cloud service provider
and users by means of the policies whenever the user do any
malicious action it will be automatically intimated to the data
owner.

Fig:- 5.2 Outer JAR

6 PUSH & PULL MODE FOR AUDITING MECHANISM

 Distributed auditing mechanism including the
algorithms for data owners to query the logs regarding their
data. Push and Pull Mode. To allow users to be timely and
accurately informed about their data usage. Distributed
logging mechanism is complemented by an innovative
auditing mechanism. It support two complementary auditing
modes:
1) push mode.
2) pull mode.

6.1 Push mode
 In this mode, the logs are periodically pushed to the
data owner (or auditor) by the harmonizer. This mode
serves two essential functions in the logging architecture: 1)
it ensures that the size of the log files does not explode and
2) it enables timely detection and correction of any loss or
damage to the log files. By construction of the records, the
auditor, will be able to quickly detect forgery of entries, sing
the checksum added to each and every record.

6.2 Pull mode
 This mode allows auditors to retrieve the logs
anytime when they want to check the recent access to their
own data. The pull message consists simply of an FTP pull
command, which can be issues from the command line. For
native users, a wizard comprising a batch file can be easily
built. The request will be sent to the harmonizer, and the
user will be informed of the data’s locations and obtain an
integrated copy of the authentic and sealed log file.

Algorithm

Let TS(NTP) be the network time protocol timestamp
Pull = 0
Rec := < UID,OID,AccessType,Result,Time,Loc>
Curtime := TS(NTP)
Lsize := sizeof(lig) //current size of the log

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3784

If ((curtime - tbeg) < time) && (lsize < size) && (pull == 0)
then
log := log + ENCRYPT(rec) //ENCRYPT is the encryption
function used to encrypt the record
PING to CJAR //send a PING to the harmonizer to check if
it is alive
If PING - CJAR then
PUSH RS(rec) //write the error correcting bits
Else
EXIT(1) //error if no PING is received
End if
End if
If ((curtime - tbeg) > time) ǀǀ (lsize >= size) ǀǀ (pull ≠ 0)
then
If PING - CJAR then //check if PING is received
PUSH log // write the log file to the harmonizer
RS(log) := NULL //reset the error correction records
Tbeg := TS(NTP) //reset the tbeg variable
Pull := 0
Else
EXIT(1) //error if no PING is received
End if
End if

Fig. 6.1. Push and pull mode.

 Here size : maximum size of the log file specified by the data
owner ,time : maximum time allowed to elapse before the
log file is dumped, tbeg : timestamp at which the last dump
occurred, log : current log file, pull : indicates whether a
command from the data owner is received.

7. CONCLUSIONS

 The proposed approach allows the third party
auditor to audit, not only audit the data but also enforce
strong backend protection if needed. One of the main
features of the CIA frame work is that it enables the third
party auditor to audit even those copies of its data that were
made without his knowledge.

REFERENCES

[1] D. Boneh and M.K. Franklin, “Identity-Based Encryption
 from the Weil Pairing,” Proc. Int’l Cryptology Conf. Ad
 vances in Cryptology, pp. 213-229, 2001.
[2] OASIS Security Services Technical Committee, “Scurity
 Assertion Markup Language2.0,”http://www.Oasis
 open.org/committees/tchomephp? Wgabb rey=security,
 2012
[3] R. Corin, S. Etalle, J.I. den Hartog, G. Lenzini, and I. Staicu,
 “A Logic for Auditing accountability in Decentralized
 Systems,”Proc. IFIP TC1 WG1.7 Work shop Formal aspects
 in Security and Trust,pp. 187-201, 2005.
[4] Y. Chen et al., “Oblivious Hashing: A Stealthy Soft Ware
 Integrity Verification Primitive,” Proc. Int’l Workshop
 Information Hiding, F. Petitcolas, ed., pp. 400-414, 2003.
[5] X. Feng, Z. Ni, Z. Shao, and Y. Guo, “An Open Frame work
 for Foundational Proof Carrying Code,” Proc. ACM

 SIGPLAN Int’l Workshop Types in Lan Gauges Design and
 Implementation, pp. 67-78,2007.
[6] P.T. Jaeger, J. Lin, and J.M. Grimes, “Cloud Compu Ting and
 Information Policy: Computing in a Policy Cloud?,” J.
 Information Technology and Politics, vol. 5, no. 3, pp.
 269-283, 2009.
[7] R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely, “Towards
 a Theory of Accountability and Audit,” Proc. 14th

 European Conf.Research in Computer security
 (ESORICS), pp. 152-167, 2009.
 [8] J.H. Lin, R.L. Geiger, R.R. Smith, A.W. Chan, and

 S. Wanchoo, Method for Authenticating a Java
 Archive(jar) for Portable Devices, US Patent 6,766,353,
 July 2004.

