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Abstract- Bayesian state estimation is the process of 
recursively estimating the state of a system. In this paper 
we will summarize three highly influential algorithms that 
have been implemented in fields as diverse as signal 
analysis, space flight control, and robotics: the Kalman 
Filter, the Extended Kalman Filter, and the Particle Filter.  

1. Introduction  

The ultimate goal of algorithms research is to find an 
optimal solution for a given problem. However, there are 
few problems in computer science that can be considered 
completely solved. That is, it is rare that one can show an 
algorithm is completely optimal for its problem domain. 
One of the few areas where a provably optimal algorithm 
can be found, however, is in Bayesian state estimation. 
Here, the Kalman Filter, an algorithm that propagates a 
system’s varying quantities over time, can be shown to be 
the best algorithm possible for its domain. This paper is an 
introduction to the Kalman Filter and several related 
Bayesian state estimators. In the rest of this introduction 
we will introduce Bayesian Filters. In the next section we 
will describe the Kalman Filter in detail. Then, we will 
detail the Extended Kalman Filter, and finally the Particle 
Filter. For each filter, we will provide a sketch of the 
algorithm, analyze its computational time complexity, and 
finally sketch a proof of its correctness, or analyze how 
well it approximates the optimal solution. 

1.1. General Bayesian State Estimation  

The focus of this paper is the Kalman Filter and its 
related algorithms. These are examples of Bayesian Filters, 
named after their application of Bayes’ law, expressed in 
Equation 1.  

                              Equation 1 

Stated simply, Bayes’ law says the probability of 
estimating A given B has occurred is equal to the 
normalized probability of B given A has occurred, 
multiplied by the probability of A occurring. Bayes’ law is 
useful when we cannot measure P(A|B) explicitly, but we 
can measure P(B|A) and P(A). A typical example used to 
illustrate Bayes’ law is estimating the probability of having 
a disease given a positive test result. In this scenario, the 
probability of a false-positive and falsenegative are the 
observable quantities used to calculate this.  

Bayesian Filters use Bayes’ law to estimate an 
unobservable state of a given system using observable 
data. They do this by propagating the posterior probability 
density function of the state using a transition model. For 
example, in robotics, the system’s state is typically the 
pose of a robot in its environment, or the configuration of 
joints in an actuator. This is usually denoted st. Also, in 
robotics the observable data is typically a control that tells 
the robot how to move, and an observation about the 
environment it makes with its sensors. These are usually 
denoted ut and zt respectively. The control can be velocity 
command give to motors, or perhaps desired angles given 
to joints. The observation can be a range and bearing to an 
obstacle. Finally, using Bayes’ law and the Markov 
assumption (that the current sate depends only on the 
previous state and not any state before it) we can state the 
Bayesian Filter below, which is derived from Equation 1 
[4].  

  Equation 2  

Here, η is a normalization factor, zt is an observation made 
by the system, ut is a transition that modifies the state, and 
st is the current state vector. Equation 2 is the basis of all 
Bayesian state estimators. The difference between them is 
how the probabilities are estimated, and the form of the 
input probability distributions. In this paper we will look 
at three different Bayesian filters, the Kalman Filter, the 
Extended Kalman Filter, and the Particle Filter. The 
Kalman Filter is a linear Gaussian estimator, and is 
optimal. The Extended Kalman Filter is a nonlinear version 
of the Kalman Filter that can handle more problem 
instances, but is not optimal. The Particle Filter is a non-
parametric estimator that is more flexible than the two but 
is more computationally expensive.  

2. The Kalman Filter  

The Kalman Filter is a very rare algorithm, in that it is one 
of the few that are provably optimal. It was first published 
by Rudolf E. Kalman in his seminal 1960 paper titled A 
New Approach to Linear Filtering and Prediction Problems 
[1]. It is used in areas as diverse as aeronautics, signal 
processing, and futures trading. At its core, it propagates a 
state characterized by a Gaussian distribution using linear 
transition functions in an optimal way. Since it is optimal, 
it has remained relatively unchanged since it was first 
introduced, but has received many extensions to apply it to 
more than just linear Gaussian systems. In this section we 
sketch the Kalman Filter algorithm, and analyze its 
computational complexity in the time domain. Finally, we 
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show it is an optimal algorithm, and that no algorithm can 
do better. This section is largely based off Kalman’s 
original paper.  

2.1. Outline of the Kalman Filter  

Since the Kalman Filter is a Bayesian filter, our goal is to 
solve Equation 2. However, we first must note the Kalman 
Filter comes with several assumptions:  

1. The state transition is linear in the form  

  Equation 3  

where st is the state, utis the control, and wk is added 
Gaussian noise.  

2. The measurement is linear in the form  

 Equation 4  

where zt is the observation, and vk is added Gaussian 
noise.  

3. The system is continuous.  

While these assumptions restrict the applicability of the 
Kalman Filter, we will show later they also ensure its 
optimality.  

The algorithm is structured in a predictor-corrector 
format. The general idea is to project the state forward, 
using a state transition function. Then this state is 
corrected by incorporating a measurement of the system’s 
observable quantities. The algorithm can be divided into 
two distinct phases: a time update phase and a 
measurement update phase.  

2.1.1. Time Update  

In the time update phase, the state is projected forward 
using Equation 3. However, we also must propagate the 
uncertainty in the state forward. Since the state is a 
Gaussian distribution, and is fully parameterized by a 
mean st and covariance Pt, we can update the covariance as 
in Equation 5.  

 Equation 5  

Here, A is the same matrix used to propagate the state 
mean, and Q is random Gaussian noise. Equations 3 and 5 
exploit a general property of Gaussians: adding two 
Gaussians results in a Gaussian, and applying a linear 
transformation to a Gaussian yields a Gaussian. There 
properties of Gaussian are crucial to the optimality of the 
filter. After the time update phase, the original Gaussian 
characterized by st and Pt is a new Gaussian, now 
characterized by st+1 and Pt+1. This concludes the time 
update phase, and represents the prediction step of the 
algorithm.  

2.1.2. Measurement Update  

The measurement update phase is the correction step of 
the Kalman Filter, wherein a measurement of an 
observable variable is made and fused with the prior 
distribution to estimate the posterior. First, we make a 
measurement of the system using our linear measurement 
model in Equation 4. After the measurement is made, we 
form what is known as the Kalman Gain, depicted in 
Equation 6. This is the key step of the Kalman Filter.  

 Equation 6  

In section 2.3 we will derive this gain, and show it is this 
that makes the Kalman Filter optimal.  

Next, we calculate what is known as the innovation 
(Equation 7). This is the difference between the expected 
observation, and the actual observation.  

 Equation 7  

Now we are ready to calculate the posterior distribution, 
by combining Equations 6 and 7. Equation 8 corrects the 
mean while equation 9 corrects the covariance.  

 Equation 8  

 Equation 9  

Here, and fully parameterize the posterior 
distribution. The preceding steps represent a single 
iteration of the Kalman filter. This output is then used as 
input to a subsequent observation, along with a new 
control and observation.  

3. Extended Kalman Filter  

One major limitation of the Kalman Filter is the strict set of 
problems to which it applies: problems with linear state 
transition and linear measurements with added Gaussian 
noise. While a great many problems can be modeled this 
way, it would be nice to apply the Kalman Filter to other 
problems, due to its optimality.  

The Extended Kalman Filter was invented just for this 
purpose. It works through a process of linearization, 
where the nonlinear transition and observation functions 
are approximated by a Taylor Series expansion. This 
section derives from a seminal paper on the Unscented 
Kalman Filter, which is similar to the Extended Kalman 
Filter [2].  

3.1. Outline of the Extended Kalman Filter  

With the Extended Kalman Filter, we can no longer assume 
a linear process update or observation model. We express 
this condition in Equations 14 and 15  

 Equation 14  
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 Equation 15  

Here, the process update and observation models are 
characterized by two potentially nonlinear functions 

 and . Since the Kalman Filter works on 
only linear inputs, we must linearize these functions to 
propagate the state covariance matrix forward. We do this 
by approximating the function as a line tangent to the 
actual function at the mean value. This line is found by 
expanding the nonlinear functions in a Taylor Series 
around the mean, and taking the first order 
approximation. This expansion is expressed as y = f(x+ε) ≈ 
f(x) + Jε, where J is the Jacobian of f(x). Equation 16 
demonstrates how we use the Jacobian to propagate our 
covariance matrices.  

Equation 16  

Here, Cx is our current covariance; J is the Jacobian of our 
nonlinear state transition function;  is zero mean 
Gaussian noise; and Cy is our transformed covariance 
matrix. However, this result is only approximate due to 
our use of the Jacobian. Thus, we need to linearize both 
equations 14 and 15 by taking the gradient of each with 
respect to the state st, as in Equations 17 and 18.  

 Equation 17  

 Equation 18  

Thus we now follow the same predictor-corrector form of 
the original Kalman Filter in two distinct phases.  

3.1.1. Time Update  

First, we propagate the mean forward to find the mean of 
our prior distribution. This is simply applying Equation 14. 
Next, we have to propagate the covariance forward, which 
was shown in Equation 14 to just be the covariance 
convolved with the appropriate Jacobian. In this case we 
use .  

                                      Equation 19  

Here, Q is again zero mean Gaussian noise of the process 
model. These two equations provide us with a fully 
parameterized Gaussian prior. We now move to the 
measurement update phase.  

3.1.2. Measurement Update  

The measurement update phase is largely the same as in 
the Kalman filter, two important exceptions. First, the 
Kalman Gain is calculated using a Jacobian. This has the 
unfortunate consequence that Kalman Gain can no longer 
be considered optimal, and thus the Extended Kalman 
Filter cannot be the best possible algorithm for filtering 
nonlinear systems. We calculate the Kalman Gain as in 
Equation 6, but this time Ht is found using Equation 18.  

The second difference is in calculating the innovation. In 
the Kalman Filter, the observation model had to be linear. 
This requirement was only to ensure the calculation for 
the Kalman Gain worked correctly. Here, our observation 
model can be nonlinear, but the way we calculate our 
innovation is straight forward.  

                                                      Equation 20  

With this last equation, we can estimate the posterior in 
the standard Kalman Filter way.  

4. Particle Filter  

Until now, we have focused exclusively on parametric 
Bayesian Filters that manipulate Gaussian distributions, 
propagating with a transition model. We now turn to a 
nonparametric filter, with a unique approach to calculating 
the posterior distribution: the Particle Filter. As its name 
suggests, it uses a set of hypothesis called particles as 
guesses for the true configuration of the state. In the 
following section we present the basic Particle Filter 
algorithm. This section derives from this seminal 1993 
paper by N. Gordon, D. Salmond, and A. Smith titled Novel 
approach to nonlinear/non-Gaussian Bayesian state 
estimation [3], where they called the algorithm the 
“Bootstrap Filter”.  

4.1. Outline of the Particle Filter  

The particle filter is different from previous filters in that it 
is not limited by linear models or Gaussian noise. This 
flexibility is due to how it represents the probability 
density function as a set of samples known as particles. 
Each sample is taken from a proposal distribution, and 
weighted according to how well it matches a target 
distribution. After weighting, the particle distribution does 
not match the posterior, so we carry out the key step in the 
Particle Filter algorithm: importance sampling. Here, we 
pick particles from the proposal particle set and add them 
to the posterior particle set with a frequency proportional 
to their weight. 4.1.1. Sample  

The first step in the particle filter is to go through every 
particle and sample from a proposal distribution.  

                       Equation 21  

Just as the Bayesian Filters we looked at in previous 
sections, the Particle Filter is a recursive algorithm, so we 
therefore sample the current state using the previous 
state. Here, the superscript [m] on both state variables 
implies that the state st is derived from the same particle 
in the previous particle set. The same control input ut as 
the previous methods is used to propagate the state 
forward. Since the transition function is noisy, each 
particle goes through a different transition, which adds 
variety to the particle set.  
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Note that we do not explicitly state how to obtain this 
sample. This is dependent on the exact system, and is one 
of the requirements of the Particle Filter, that a proposal 
distribution must be available to sample from. In many 
applications, this is readily available. If not the case, it 
sometimes suffices to sample from a Gaussian distribution 
with appropriate mean and covariance.  

4.1.2. Weight  

Next each particle is weighted based on how well it 
matches the posterior distribution. This is expressed in 
Equation 22.  

 Equation 22  

This is equivalent to the measurement update phase in the 
Kalman Filter, where the observation is incorporated into 
the belief. There are many different methods to weight 
particles, but most involve estimating the following 
quotient  

                                                 
Equation 23  

Where  is our proposal distribution, and  is 
our target distribution. When we have completed these 
two steps, we are finally free to add the new weighted 
particle to a temporary particle set.  

4.1.3. Resample  

Also known as importance sampling, the resample step 
uses the newly generated temporary particle set to 
generate the final posterior distribution. Just as with 
weighting the particles, there are many ways to 
accomplish importance sampling, but doing this 
incorrectly can lead to the wrong posterior distribution. 
Essentially, the resampling step reduces variance in the 
particle set, which decreases the accuracy of the posterior 
approximation. In general, we sample with particles with 
replacement with a frequency proportional to their 
weight. However there are myriad variations on this 
general method. 

5. Discussion and Conclusions 

So far, we have presented three different Bayesian Filters: 
The Kalman Filter, the Extended Kalman Filter, and the 
Particle Filter. In this final section, we will compare the 
different filters and discuss their applicability in the 
context of robotics, but with implications for other fields.  

 

 

 

The following table summarizes the major aspects of 
each algorithm.  

 

The first algorithm, the Kalman Filter, is one of the few 
algorithms researchers can call solved; it solves state 
estimation for linear Gaussian systems in an optimized 
manner. For this reason, even though the algorithm is over 
half a century old, it is still used extensively today. The 
second algorithm was an extension of the Kalman Filter. It 
attempts to re-lax the requirements for a linear Gaussian 
system, so it is applicable to more systems. It does this by 
expanding the transition and observation models in a 
Taylor series approximation, and using their Jacobians to 
propagate covariances. The Ex-tended Kalman Filter is no 
longer optimal, but the robustness of the original Kalman 
Filter allows for a great deal of latitude in the degree of 
nonlinearity of the model functions.  

The final algorithm was the Particle Filter, a 
nonparametric Bayesian State Estimator. This algorithm 
differs from the previous two in that it has no 
requirements on the transition and observation models. It 
manages this because samples are taken from a proposal 
posterior, and then weighted according to observations in 
order to approximate the true posterior. The beauty in the 
Particle Filter is found in the resampling stage, where 
particles are chosen for the posterior according to their 
respective weights. Several factors affect the performance 
of the Particle Filter, including variance in the particle set, 
frequency of resampling, and how well the proposed 
posterior matches the target posterior. This flexibility 
comes at the price of high computational complexity in the 
size of the state space. 
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