
          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

               Volume: 05 Issue: 05 | May 2018                    www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 6.171       |       ISO 9001:2008 Certified Journal       |   Page 4322 
 

Design of an Efficient Hardware Searching algorithm 

Ashish Jadhao1, Vanita Agarwal2 

1M. Tech, Electronics and Telecommunication Department, College of Engineering, Pune, India 
2Assistant Professor, Electronics and Telecommunication Department, College of Engineering, Pune, India 

---------------------------------------------------------------------***---------------------------------------------------------------------
Abstract - Searching algorithms has been widely 
investigated to increase its speed. Also, Cellular automata 
(CA) with evolutionary rules has been a significant area of 
research. Speed is a very important factor in any search 
algorithms. Many researchers have concluded that 
Searching with the help of hardware is always fast than 
software. Therefore, we propose a hardware 
implementation of a searching algorithm. This algorithm 
has been designed with the help of Cellular Automata (CA). 
The Rule induction for cellular automata is done by using 
Learning from examples module 2 (LEM2) algorithm. It is a 
Rough set approach; Rough set approach has also been used 
for updating the CA rules. This algorithm has been 
implemented on Xilinx Artix 7 FPGA. 
 
Key Words:  Cellular Automata(CA), Learning from 
examples module 2(LEM2) 
 

1. INTRODUCTION 
 
A cellular automaton is a mathematical model or a system 
of cells with some specific characteristics. Cellular 
Automata (CA) are discrete mathematical models. They 
are the systems that have self-reproduction and chaotic 
behaviour and are determined by simple rules. The 
Cellular Automata have following characteristics: 
 Key elements of a Cellular Automata are grids, states 

and neighbourhoods. 
 Each cell lives on a grid. 
 Every cell has a state or value having finite state 

capabilities.  
 Every cell has its neighbourhood. It can be described 

in multiple ways, generally it is an array of adjacent 
cells. 

 A new state of a cell is a function of value of that state 
and its adjacent cells at the previous time instance. 
Cell state at time t= f (cell neighbourhood at time t-1) 

 In Elementary Cellular Automata, we have three cells, 
each with state of 0 or 1 as shown in fig.1. Black states 
are denoted as ‘1’ and white represents ‘0’. 

 

 
  

Fig. 1: Rule 90 of cellular automata 
 

Fig. 1 shows an example of Cellular Automata using Rule 
90. Rule 90 is given by the modulo-2 addition of both the 
neighbourhoods. 
The evolution of a cell depends on its own value and those 
of its nearest neighbours. The local rule is the function of 
the cells within the neighbourhood [5] and expressed as 
 

 ( )        
       

       
       …… (1) 

 
‘*’- denotes any binary operation 
In Elementary CA, we can generate total 256 rules. Each 
rule gives different solution on next time instance. 
The total configuration of a CA is specified by the values of 
total number of cells [5] and represented by a 
characteristic equation  
 

 ( )( )   ∑   
( )
     

       …… (2) 

  

where, the value of cell i is the coefficient of    
Such behaviour of Cellular automata can be used in 
Genetic algorithms and Data mining methods. This has 
been a wise topic in Artificial Intelligence. Therefore, 
Researchers have studied the behaviour of CA and has 
been widely used in some applications. Also, Hardware 
implementation will increase its speed and efficiency [6]. 
Therefore, we have also this algorithm on hardware.  
 This paper explains about the FPGA 
implementation of a searching algorithm using Cellular 
Automata and a Rough set approach for generating the 
rules of Cellular Automata. The next section explains about 
the methodology to find the Rule set. The complete LEM2 
algorithm with pseudocode and steps to solve the 
algorithm. The third section gives the results given by 
LEM2 algorithm. The fourth section explains the 
conclusion and future work. 
 

2. METHODOLOGY 
In general, the problem of CA identification is to find the 
cell neighborhood and updating rule based on the 
different input data set, to solve this type of problem, the 
input dataset should be represented in the form of a 
decision table [2]. Decision table is a set of observations 
and cell states. Thus, rough set approach is used to identify 
rules and to update rule of CA [2].  
Before that, we need to induce rules for CA which can be 
done by several algorithms. One of them is LEM2 
(Learning from examples module 2). Among other rule 
induction algorithms, this one gives better results [1]. It is 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

               Volume: 05 Issue: 05 | May 2018                    www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 6.171       |       ISO 9001:2008 Certified Journal       |   Page 4323 
 

a local rule induction algorithm [1]. It means the search is 
a set of attribute-value pairs.  
 
 

 
 

Fig. 2: Block diagram of complete process 
 
The input data should in the tabular form with decision 
attributes. Suppose, there are four or five attributes which 
defines the decision attribute, which means the value of 
decision attribute is decided by the pairs of values of four 
or five input attribute. LEM2 algorithm gives rule set 
which is enough to define the decision. Local covering will 
give reduced set of attribute-value pairs. Here, the Reduct 
is the local covering of input data set. That set is enough to 
define the decision attribute-value. In a searching, instead 
of checking all attribute-value pairs for a output we can 
check reduced set of attribute-value pairs which are 
conditional attributes. In this way, we can reduce the time 
complexity and hardware utilization. For different input 
dataset, there are different rule sets. It is based on the 
number of attributes and their values. 
 
Table - 1: Dataset for defining the rules 
 

 

Case 

                                                                                                                    

                            Attributes 

 

Decision 

Flu 

A1 A2 A3 A4 

1 V Y Y N Y 

2 H Y N Y Y 

3 N N N N N 

4 N Y Y Y Y 

5 H N Y N Y 

6 H N N N N 

7 N N Y N N 

 
From the above table, some terms are defined as follows: 
V= very high 
H= high 
N= normal (for attribute A1 only) 
Y= yes 
N= no (for attributes other than A1) 

For the example given in Table 1, the LEM2 algorithm and 
symbols used in the algorithm are explained further. 
Let U be a set of all observations and cell state values. A set 
of m is a set of all cases from U such that for attribute a 
have value v i.e. m = (a, v). Let X be a set of decision-value 
pair (d, v). Set X depends on a set M of attribute-value 
pairs m = (a, v) only if it satisfies the following equation 
 

     , -   ⋂ , -        …… (3) 
 
  
Set M is a minimal set of X’s if and only if X depends on M 
and there is no real subset M’ of M should exists such that 
X also depends on M’. Let Γ be a set of attribute-value 
pairs. Then Γ is a local covering of X if and only if the 
following two conditions are satisfied: 
(1) Each member M of Γ is a minimal of X, 

(2) ⋃ , -      , and 
Γ is minimal, i.e., Γ has the smallest possible number of 
members. 
The following is the pseudocode for the LEM2 algorithm 
[1]: 
 
(Input: set X, 
Output: single local covering Γ of set X); 
begin 
Z: = X; 
Γ: = Φ; 
while Z ≠ Φ; 
begin 
M: = Φ; 
M(Z): = {m|[M] ∩ Z ≠ Φ} 
while M = Φ or [M] ⊄ X 
begin 
Select a pair m   M(Z) such that |[m] ∩ Z| is maximum;  
if a tie occurs, select a pair m   M(Z) with the smallest 
cardinality of [m]; cardinality means number of cases 
present in that set. 
If another tie occurs, select first pair; 
M: = M ∪ {m}; 
Z: = [m] ∩ Z; 
(Z): = {m|[M] ∩ Z ≠ Φ; 
(Z): = M(Z) − M; 
end {while} 
for each m   M do 

if [M – {m}]   X then M: = M – {m}; 
Γ: = Γ ∪ {M}; 

Z: = X −  ⋃ , -    ; 
 
end {while}; 
each M ε Γ do 

if ⋃ , -       * +  then Γ: =Γ –{M}; 

end {procedure} 
 
 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

               Volume: 05 Issue: 05 | May 2018                    www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 6.171       |       ISO 9001:2008 Certified Journal       |   Page 4324 
 

1. The first step is to compute the elementary set of 
all attribute with their values. These blocks contain 
set of cases which has specific attribute and its 
value. There can be multiple sets as one attribute 
can have more than one value. 

2. Second step is to select the Concept for which rule 
should be induced. Concept is the set of all cases 
denoted by same decision value [1]. After selecting 
concept, compute the set of attribute-value pairs of 
those cases. 

3. Next step to compare the sets of steps 1 and 2 and 
the intersection of these sets should be maximum. 
If the cardinality of more than one set is same, then 
the next criteria is the size of attribute-value pairs. 
The size should be smaller. By satisfying these two 
conditions, the resultant set will be the first Reduct 
of the given concept. 

4. Check if all the cases of concept are covered or not, 
if not, then follow the step 2 and step 3 until all the 
cases could not cover. 

These steps will give the local covering and rule set is 
defined by these local covering.  Those rule set will contain 
attribute-value pairs. Hence, for searching of a decision, 
we need not check all the attributes. Just search these 
attributes and their values. Every rule set follows a specific 
pattern. That’s why, we can use cellular automata for 
specific pattern. We can just map those rules set to CA 
rules.  
 LEM2 algorithm gives better results. Also, CA can give 
pattern for searching algorithm. CA can be used in pattern 
searching and many searching algorithms. 
 As we know, Cellular Automata consists of cell states, 
therefore the generated rules can be labeled as a one state. 
Based on number of reducts induced by this algorithm, the 
dimension of CA is determined. If number of states is less 
than three, then 1-D CA which is also known as 
Elementary CA has been used, otherwise 2-D CA is used. In 
our example, two reducts have been generated which can 
be labeled as two states. Hence, we have Elementary CA in 
Searching algorithm. In Searching algorithm, instead of 
looking for whole set of attributes and their values, now 
we are checking these reducts for the rest of searching and 
it reduces time complexity and hardware utilization. 
 

3. RESULTS 
 
For the given dataset in Table 1, the rule set generated by 
LEM2 is, 
For the concept (flu, Y), the rules generated are (A2, Y) and 
(A1, H) & (A3, Y). 
We are getting the same result by solving theoretically and 
by using coding method. The following shows the 
Synthesis Report for code of LEM2 algorithm. 
The operating clock frequency on FPGA is 100MHz. 

Following is the timing analysis of the code on 

hardware. 

Table - 2: Timing (ns) 

Clock Target Estimated Uncertainty 

ap_clk 10.00 6.23 1.25 

 

Table - 3: Latency (clock cycles) 

 Latency Interval 

Min Max Min Max 

169 345 169 345 

 

Following is the usage of hardware requirements for 

this code. 

Table - 4: Utilization Estimates 

 
 
 
 

Name BRAM_1

8K 

DSP48E FF LUT 

DSP - - - - 

Expression - - 0 142 

FIFO - - - - 

Instance 0 - 299 2323 

Memory 0 - 832 53 

Multiplexer - - - 878 

Register - - 106 - 

Total 0 - 1237 3396 

Available 780 740 26920

0 

12900

0 

Utilization 

(%) 

0 0 ~0 2 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

               Volume: 05 Issue: 05 | May 2018                    www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 6.171       |       ISO 9001:2008 Certified Journal       |   Page 4325 
 

4. CONCLUSION 

This paper presented the hardware implementation of 
LEM2 algorithm and Cellular automata in searching 
technique. Artix7 FPGA was used for the proposed work. 
From the results, it is shown that total utilization LUTs is 
just 2%. Although, this synthesis is for one input dataset. It 
may change for different inputs as each input can have 
different number of attributes and values, but this 
algorithm will generate better results as compared to 
others. Future work includes defining the states of Cellular 
Automata using the generated rules. 

ACKNOWLEDGEMENT 
 
Authors would like to thank Prof. A. B. Patki for his 
valuable inputs and timely suggestions which helped us in 
timely completion of our proposed work. We would also 
like to thank all the VLSI lab members of COE, Pune for 
their constant support during this period. 

 
REFERENCES 
 
[1]Jerzy W. Grzymala-Busses, “RULE INDUCTION”, 

University of Kansas 

[2]Bartlomiej Placzek, “Neighborhood selection and rules 

identification for cellular automata: a rough set approach” 

[3]KEN-ICHI MAEDA and CHIAKI SAKAMA, ”Identifying 

Cellular Automata Rules” , Journal of Cellular Automata, 

Vol.2, pp 1-20 

[4]Xianfang Sun, Paul L. Rosin, and Ralph R. Martin, “Fast 

Rule Identification and Neighborhood Selection for 

Cellular Automata”,  IEEE Transactions on systems, Man 

and Cybernetics, Vol. 41, No. 3, June 2011.  

[5]Olivier Martin, Andrew M. Odlyzko and Stephen 

Wolfram, “Algebraic Properties of Cellular Automata”, 

Communication in Mathematical Physics 93, 219-

258,1984 

[6]F.K. Hanna and A.K. Misra, “Hardware realization of 

binary search algorithm,” IEEPROC, Vol. 127, Pt. E, No.4, 

JULY 1980 

[7]Robert S. Boyer, J Strother Moore, “A Fast String Search 

Algorithm,” Communications of ACM, Vol. 20, Number 10, 

October 1977 

[8]Hossam E. Mostafa, Ahmed I. Khadragi, Yasser Y. Hanafi, 

“Hardware Implementation Of Genetic Algorithm On 

FPGA,” 21th National Radio Science Conference 

(Nrsc2004)(NTI) March 16-18,2004 


