
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 4315

Performance Analysis of Combined symmetric and Asymmetric

Parallel Programming Method for IoT Application

Elezabeth Thomas1, Saju A2

1Student, Dept. of EC Engineering, Believers Church Caarmel Engineering college, Kerala, India
2Professor, Dept. of EC Engineering, Believers Church Caarmel Engineering college, Kerala, India

---***---
Abstract - Parallel computing was present since the early
days of computing. In high performance computing the
important parts are parallel algorithm and simulation. The
execution may require lots of power for processing. For the
analysis purpose best area chosen are SMP and ASMP. With
exposure to SMP and ASMP in different way, the Project was
built using Raspberry Pi 2 Model B embedded processor. For
SMP excellent platform selected is a computer with 4 core
processor as single board i.e, Raspberry pi 3 Model B hence
memory concept used in it is shared memory. For ASMP, using a
Wi-Fi network we provide server cluster connection using two
Raspberry Pi board. Sobel Filter is used in image processing and
computer vision, particularly within an edge detection algorithm
where it creates an image edges were chosen as a target
application to analyze the performance. Sobel filter is the best
target application which having two dimensional array turned
out the computation of edge by these platforms. Also perform
hybrid verses SMP and ASMP analysis of k-mean algorithm for
clustering a group of data. Finally reaching at a conclusion that
hybrid system, achieves the better performance than SMP and
ASMP Programs

Key Words: SMP, ASMP, sobel filter, K-mean Algorithm,
Hybrid network

1. INTRODUCTION

Parallel computing is a type of compilation in which many

calculations are performed at the same time. Basic principle

of parallel computing is that compilation can be divided into

smaller sub problems each of which can be solved

simultaneously.

Parallel computing was present since the early days of

computing. In high performance computing the main area of

focus are the parallel algorithm & simulations, it may require

a lot of power for operating. For regular use we have to

increase the clock frequency of CPU, so that CPU could

execute high number of instructions for second.

Frequency scaling is no longer possible after a freezing point

because the power require for processor starts to go

nonlinear this is known as Power Wall. Multiple CPU cores

providing was solution found by the vendors instead of

increasing the clock frequency of CPU processor and in

which each chips capable of executing separate instruction

streams. Parallel computing provides computational power

when sequential computing cannot do so. But parallel

programming is some more difficult than sequential

programming. Mainly because of these reason:

1.Dividing sequential computations into parallel

computation can be complex or even impossible.

2.Due to different errors resulting in the computation may

cause program correctness more difficult.

3. Speed up is the only reason why we bother paying for this

complexity.

Main advantage of parallel programming is that increase in

program performance; and it is expected to be faster than

the sequential program.

Parallelism & concurrency are closely related concepts. In

case of parallel program, parallel hardware to execute

computation more quickly. Efficiency is its main concern to

make the parallel hardware to obtain optimal speed. For this

different techniques are available.

Multiple executions are may not performing at the same time

for a concurrent programming. Which also improves

modularity, responsiveness along with providing better

maintainability. Where in this type of program execution

when an execution start & how it shares the computational

results are important. Parallelism manifest itself at different

granularity level like bit level.

 Bit level parallism in which processing multiple bits

of data in parallel

 Instruction level parallism in which executing

different instruction from the same instruction

stream in parallel.

 Task level parallism where separate instruction

stream in parallel

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 4316

 Parallel computers can be classified by considering the level
at which the hardware supports parallelism, mainly

1.1 Symmetric Multi-processing

One of the main concept for shared memory multiprocessor

architecture is symmetric multiprocessing(SMP). Where bus

providing a medium for interconnecting cache of each

processor in the SMP. In a bus based structure access time

for all memory locations is equal because all the access time

for all processor gets data from the main memory through

the bus.

In any multiprocessor, main memory access is a bottleneck;

to reduce the memory demand of a processor multilevel

caches are introduced. To share the memory bus between

more processor become possible by introducing a concept of

multilevel cache.

For a system when the number processor increases

contention for the bus also increases. One of the main way-

out may be to use switches (crossbars, multistage networks,

etc.) instead of a bus. Hence the scalability of the SMP model

restricted but while using switch given a parallel point to

point connections, also use which may cause the

implementations of cache coherence difficult.

An important problem with shared memory is coherence; i.e.

when the shared data are cached which may replicate in

multiple caches. Different processors having the data in the

cache memory may become inconsistent. Multi cores on the

same packaging will execute different threads, when there is

no thread to execute it will be switched off. The Multi core

system can be dual, core etc.

To overcome cache coherence problem by dynamically

recognize any potential inconsistency at run-time & carry

out preventive action. There by consistency maintenance

becomes transparent to programmers, compilers, as well as

to the operating system.

Two different modes of programming challenges remain in

the symmetric multi-processing; one for the CPUs itself and

one for the interconnect between the CPUs. A single

programming language used in an architecture would have

to be able to not only to comprehend the memory locality,

but also, partition the workload which is the one of the

important criteria in mesh-based architecture.

To implement the shared memory system, the library now a
day used is OpenMP. In symmetric multi-processing(SMP) for
shared memory parallel application are performed by

OpenMP(open Multi Processing). It a library consists of
compiler directives and library routines for parallel
computing programs. All the memory threads of same
parallel program will be sharing same address space.

Fig1: Diagram of symmetric multi-processing system

Because it is not a complex language, and we don’t have to

spend lot of time to do parallel programming using Open MP.

Open MP supports fortan & C++ and C.

OpenMP helps to interface for developing parallel computing
application from standard desktop computer to super. It is an
implementation of a master node which perform the
execution of multithreading task by guiding a number of slave
node and parallel computing used for diving threads among
them for the efficient computation.

1.2 Asymmetric Multi-processing

For handling multiple CPUs Asymmetric multiprocessing
(ASMP) was the only method available and after that the
concept of symmetric multi-processing arrived. It has also
been used to provide less expensive options on systems
where SMP was available. In embedded system the
individual task is very important to perform and ASMP was
useful for such a dedicated individual task in that platform. It
is not important that all CPUs are not treated equally in a
ASMP; i.e. some system that only allow (either at the
hardware or software) one CPU to perform software code or
may only allow one CPU to perform general input output
operations. Other ASMP systems could enable any CPU to
execute software code and to perform input output
operations

Fig2 : Diagram of asymmetric multi-processing system

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 4317

Message passing model parallelism is achieved by having
many processes co-operating on the same task. Each process
has access only to its own data that is all variable used in this
method is private. And each processes communicate with
each other by sending and receiving messages. A message
transfer mechanism in which a number of data items of
certain type from the memory of one process to the memory
of another process. A message typically contains ID of
sending processor, ID of receiving processor, the type of data
items, the number of data items, the data itself, finally a
message type identifier. It doesn’t have any proper structure
that’s why it is well fitted with object oriented language like
Java, C++. Generally, a message passing can be either
synchronous or asynchronous. A synchronous send is not
completed until the message has gone. An asynchronous send
completes as soon as the message has gone. In MPI the
receiving messages is always synchronous. High Performance
Interconnect or a Memory Controller are not required for this
mechanism because it is not a complicated hardware and also
multi computer used in this mechanism is less costly. Beowulf
clustering is chosen as architecture for message passing in
multi computer between the different nodes. The system
contains master node or server node which guide the one or
more slave node for task execution via Wi-Fi or Ethernet or
some other network. Beowulf clustering architecture uses
software like MPI, Unix, PVM etc.

In this work for implementing asymmetric multi-processing
MPI (Message Passing Interface) was the technology selected.

It is a library which standardized and rather written in
languages like C, C++, Fortan and implementation can be
performed via openMPI, MPICH, MVAPICH. Also for python
programmers MPI can be introduce by the implementation of
Mpi4py.

2. SOBEL FILTER

Output regions of image that given to a sobel filter in which
high spatial frequency that correspond to edges of the image.
When an input gray scale image is given it will immediately
find the absolute tilt magnitude.

Fig3:sobel matrix values for each co-ordinate

The kernels are designed to acknowledge maximally to edges
running vertically and horizontally relative to the pixel grid,
one kernel for each of the two perpendicular orientations.
The input image can be executed by kernel separately, to
produce separate values of the tilt component in each
segments

Fig4: sobel filter operation of x filter with original image

Fig5: sobel filter operation of y filter with original image

The absolute magnitude and orientation of the tilt can be find
out by combining the these two at each point and the
orientation of that tilt. The gradient magnitude is given by:

Typically, an approximate magnitude is computed using:

In case of SMP, the two dimensional Image array given to
shared memory processor and assign them to each thread. In
case of ASMP, for performing convolution of a pixel in ASMP
we need the pixels surrounding it. Check figure 4, the output
pixel 1,1 is calculated by the convolution which involved all
the pixels surrounding it. Either along y axis or x axis we can
divide the image array symmetrically as shown in Figure5
and sent them to different cluster nodes, the edges in the
image needs pixels from the previous row which is not local
to that particular. Last and first row of first and third chunks
can be used to perform edge detection by the first and last
row of second chunk respectively

3. K-MEAN CLUSTERING

Clustering is a type of dividing a set of data into different
group so that the object within the group share a common
character. In the case of clustering there is no guidance of
how do you do group. So it is given by the name of
unsupervised learning. Once we form the group label the
group. Also given by the name learning by Observation. Any
good clustering approach will generate high quality clusters.
High quality clusters means there is high intra cluster
similarities which means the object within the group are

http://homepages.inf.ed.ac.uk/rbf/HIPR2/freqdom.htm

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 4318

tightly bound or similar to each other compare to the objects
between the clusters. The quality of the cluster developed
during the clustering mainly depends on the similarities we
used and how it is implemented etc.

Partition clustering approach it takes the data base of n
objects and create k partition or k cluster and the basic focus
of here is to reduce the sum of squared distance. If a cluster is
represented by centroid or medoid partition clustering
approach finds out for each of the cluster what is the distance
between a object within the cluster and cluster or centroid or
medoid it takes the square of the distance finds the sum of
square of distance for each of the distance then each of the k
clusters. Global optimal is one the partition criteria for
generate all partitions and try to find the best one.k-means
and k-medoid clustering algorithm. These two clustering
techniques mainly tries to reduce the sum of the squared
distances using the Heuristics approach.

K-means clustering is a simple and understandable
clustering method, which divide a set of data observations
into k cluster. In k-mean clustering algorithm one of the
important term is centroid which is actually the mean of
cluster and in K-medoid algorithm one of the object in the
cluster represents each of the cluster. It has many
advantages in the field like computer vision, agriculture,
image and market segmentation. Its huge applications and
its simple measurement complexity make k-means
clustering as one of the best method now a day.

When the dimension d>1 and cluster number become k>1 it
is hard to discover minimum cost function of the k-mean
clustering. Scientists came up different solution but still it is
difficult to measure. So we want to build a parallel version of
a k-means method on a clustering which having high
accuracy and also increases computation speed.
The algorithm works as follows:

1.First we initialize k points as centroid(mean) by random

manner.

2.We classify each data to the closest centroid by Euclidean

distance method and update new cluster center by taking

minimum value from the calculation.

3.We repeat the steps until number of iteration have same

calculation value.

Fig6: flow chart of k-mean clustering algorithm

SYMMETRIC MULTIPROCESSING USING OPENMP

Parallelization using multiple cores of the same CPU can be

introduced into a C/ C++ program by using constructs from

the standardized OpenMP library. OpenMP should come pre-

installed in a system with any standard version of gcc (GNU C

compiler) or g++ (GNU C++ compiler) on both old and newer

version of *nix based systems, where *nix can mean any Unix

or Linux derivatives. These constructs can be used in any

C/C++ program by including “omp.h” header or pre-

processor directive directly in the program and using the

compiler flag -fopenmp when compiling using gcc / g++ to

instruct the compiler to include OpenMP during the link

phase. The compiler flag is required as OpenMP is developed

as a set of code transforming pragmas which are only

applied at compile time. The most resource-demanding

procedures or sub-routines in the program are to be

parallelized for parallelisation to have maximum effect on

the program execution time. Hence sobel_filtering sub-

routine was chosen to be parallelized using OpenMP. “omp

parallel” compiler directive instructs the compiler to

parallellize the code contained inside this construct using

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 4319

parallel threads running in different cores of the same

processor. In this case, the values corresponding to the pixels

involved in the convolution will be sent to the different

cores. Nested loops can be collapsed using

#pragma omp parallel for collapse (2)

clause where the number in parenthesis instructs the

compiler to collapse the first two for loops.

Sharing processing or computation load among different

cores of a processor is expected to decrease the program

execution time compared to when running a sequential

program with a single core. However, this is dependent on

the ‘edge cases’ during parallelisation problem mentioned

elsewhere and on the way the program is implemented.

When the case of Kmean clustering as we know that there
are two steps where one of the step such as E-step can done
only by openMP method. When M-step is used by direct
openMP parallelization which may result WAW(Write-After-
Write) i.e. different data points may add to the same cluster.
So using openMP we only focus on E-step.

When the number of core increases M-step is not too much

time consuming but when E-steps scales well M-step become

slow.

ASYMMETRIC MULTI-PROCESSING USING MPI

In asymmetric multiprocessing using mpi, the data is split

based on the number of nodes available. This way, the

master node divides and sends the load among all slaves

nodes. Lower number of nodes in the Beowulf Cluster can

result in larger chunks being sent to each node to be

processed locally. This places a greater demand on the

processor and on other resources native to the node. Smaller

chunks of data will be communicated among the nodes as the

size of the network increases. Also, ideally, the

computational capability of each node should also be

considered when distributing the load. Our implementation

uses nodes with similar computational power and hence

data is distributed as equally-sized chunks.

In a setup where different nodes have varying processing

capability, the computational capability of slave nodes may

be assessed and communicated to the master node so that

larger chunks of data are distributed to more capable nodes

and smaller chunks to less powerful nodes.

The simplest way for this is to assign ranks to nodes based

on their computational capability or willingness to allocate

resources for the parallel process. Assessing processing

power of nodes on-the-run can be an attractive alternative

method, but can introduce a greater demand on resources as

it requires more information such as the underlying

processor and resources supporting it to be shared. The

slave nodes and the master process the individual data

chunks locally. Slaves communicate the processed data back

to the master node. The master node communicates to the

slave node either through collective communication

constructs or using point to point communication constructs.

Slaves transfer the processed information back to the master

using point to point communication constructs. MPI

implements collective and point to point communication

procedures as blocking constructs. It is left to

implementations to avoid deadlock conditions.

The master node takes care to communicate the chunks of

data such that data near the edges of the chunks constitute a

section of the data from adjacent chunks so that the data

overlapping can be achieved in a way that convolution

operations can be performed without error. Further,

additional overhead in communication, although minimal, is

unavoidable as each node should have information such as

the total size of the image before processing so that memory

can be allocated dynamically i.e., on the run. Additional

information related to application too are to be

communicated.

 Data split based on number of nodes available

 Master node splits data into chunks among nodes and

communicates the chunks among the nodes

 Slave nodes and the master process the individual data

chunks locally. Slaves communicate the processed data

back to the master

 Master node communicates to slave nodes either using

collective communication constructs or using point to

point communication constructs.

 Slaves communicate back to the master using point to

point communication procedures.

 MPI implements collective and point to point

communication procedures as blocking constructs. It is

left to implementations to avoid deadlock conditions.

 The master node takes care to communicate the chunks

of data such that data near the edges of the chunks

constitute a section of the data from adjacent chunks so

that the data overlapping can be achieved in a way that

convolution operations can be performed without error.

 Further, additional overhead in communication,

although minimal, is unavoidable as each node should

have information such as the total size of the image

before processing so that memory can be allocated

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 4320

dynamically i.e., on the run. Additional information

related to the application too are to be communicated.

In parallel K-mean clustering distribution of data to different

process is carried by MPI-Bcast, and to transfer information

whenever it is needed using the command MPI-Allreduce. In

this process with any further complication E-step and M-step

can be executed. In this case speed is better than openMP.

HYBRID of SMP and ASMP

As both SMP and ASMP programs were built successfully, a
hybrid of both the models was built by adding openMP
constructs to the existing ASMP program. The Images which
are divided symmetrically at the master node are sent to
slave nodes for local processing. In each node being a
Raspberry pi, which itself can act as a perfect SMP as
described in section 5, openMP parallelization was applied
locally.The reason why the SMP and ASMP setup is able to
achieve high speedup is because, 16 Cores are processing
different parts of the image concurrently, resulting in high
speed up

Fig7: Block diagram of hybrid system

Also, The Intercommunication Latency which is low due to
10/100 Mbps Ethernet connection between the Nodes helped
to reduce the overhead associated with the Message Passing.
Since all the nodes involved in the Cluster uses same
Processor and of same architecture, there was no difficulty or
issues when implementing it. The time taken for the same
image used for discussion in all above sections was 0.02
seconds, which is clearly a better performance than both SMP
and ASMP programs

In K-mean clustering for a hybrid version we mix-up openMP
programming codes to the MPI programs. This time we have
to test different combinations of MPI and openMP task.
Finally we get the result as speed is increased for a hybrid
version for a number of openMP and MPI thread.

4. RESULT AND CONCLUSION

From SMP, ASMP and Hybrid applications the performance

time was find for four different times and an mean time was

calculated to compare the performance of different

implementation by the target application. Images of two

different size were selected to prove the point that large data

can be processed efficiently by programming parallel hybrid

concept instead of sequentially. This helps to exploit the

availability of multiple cores in the processor system and

also provides an opportunity to getting performance in

distributed system in case of IoT(Internet of Things).

Image

pixels

Sobel

Sequential

(time in s)

Sobel

OMP

(time

in s)

Sobel

MPI

(time

in s)

Sobel

Hybrid

(time

in s)

256 x

256

0.2123 0.0851 0.0912 0.0520

0.2312 0.0755 0.0822 0.0500

0.2142 0.0721 0.0773 0.0433

0.2134 0.0763 0.0721 0.0500

256 x

256(avg)

0.2178 0.0772 0.0807 0.0488

512 x

512

0.8422 0.2432 0.2342 0.1001

0.8214 0.2531 0.2256 0.1030

0.8351 0.2821 0.2672 0.1000

0.8121 0.2012 0.2238 0.1025

512 x

512(avg)

0.8277 0.2449 0.2377 0.1014

Performance evaluation of the above details plotted in

graphical manner which include the variation in time

required to execute the sobel filter in openMP, MPI and

Hybrid is given below for different image size of 256x256

and 512x512

Fig8: performance analysis of sobel filter for an image size

of 256px

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 4321

Fig9: performance analysis of sobel filter for an image size

of 512px

Also from the detailed study of set of input data of different

category species are classified using k-mean clustering in

openMP, MPI and Hybrid is given below.

Fig10: performance analysis of k-mean clustering for input

data collection

Hence the distributed system in parallel computing with

hybridization of SMP and ASMP can reduce the time required

for the edge detection process by a factor 40-50%.

REFERENCES

[1] N.E.A.Khalid , S.A.Ahmad, N.M.Noor, A.F.A.Fadzil and
M.N.Taib (2011), Parallel approach of Sobel Edge Detector
on Multicore Platform , International journal of Computers
and Communications Issue 4, Volume 5, 236-244

[2] Michael Lescisin, Qusay H. Mahmoud (2016),
Middleware for Writing Distributed Applications on Physical

Computing Devices, IEEE/ACM International Conference on
Mobile Software Engineering and Systems, 21-22

[3] Michael Lescisin and Qusay H. Mahmoud (2017),
DCM: A Python-based Middleware for Parallel Processing
Applications on Small Scale Devices, IEEE 30th Canadian
Conference on Electrical and Computer Engineering (CCECE)

[4] Andrew K. Dennis (2013), Raspberry Pi Super Cluster,
www.packtpub.com

[5] Nazleeni Haron, Ruzaini Amir, Izzatdin A. Aziz, Siti
Rohkmah Shukri, Low Tan Jung (2010), Parallelization of
Edge Detection Algorithm using MPI on Beowulf Cluster,
Innovations in Computing Sciences and Software
Engineering, 477-478

[6] Poman P.M. So and Wolfgang J.R. Hoefer (2001),
Poman P.M. So and Wolfgang J.R. Hoefer, IEEE MlT-S Digest,
2007-2010

[7] Honggang Wang, Jide Zhao, Hongguang Li and Jianguo
Wang (2008), Parallel Clustering Algorithms for Image
Processing on Multi-core CPUs, International Conference on
Computer Science and Software Engineering, 450-453

[8] Azhar Rauf, Sheeba, Saeed Mahfooz, Shah Khusro and
Huma Javed (2012), Enhanced K-Mean Clustering Algorithm
to Reduce Number of Iterations and Time Complexity,
Middle-East Journal of Scientific Research 12 (7): 959-963

[9] Murtagh (1983), A Survey of Recent Advances in
Hierarchical Clustering Algorithms, the computer journal,
vol. 26, NO. 4

[10] Vincent D. Blonde, Jean-Loup Guillaume, Renaud
Lambiotte and Etienne Lefebvre (2008), Fast unfolding of
communities in large networks, physics.soc-ph, 1-12

[11] Tayfun Kucukyilmaz (2014), Parallel K-Means
Algorithm for Shared Memory Multiprocessors, Journal of
Computer and Communications, 15-23

[12] V.Ramesh, K.Ramar, S.Babu, Parallel K-Means
Algorithm on Agricultural Databases, IJCSI International
Journal of Computer Science Issues, Vol. 10, Issue 1, No 1,
January 2013, 710-713

[13] K. A. Abdul Nazeer, M. P. Sebastian (2009), Improving
the Accuracy and Efficiency of the k-means Clustering
Algorithm, Proceedings of the World Congress on
Engineering Vol I WCE 2009, July 1 - 3, 2009, London, U.K.

[14]Ujjwal Maulik and Sanghamitra Bandyopadhyay
(2012), Performance Evaluation of Some Clustering
Algorithm and validity indices, IEEE transaction on pattern
analysis and machine intelligence, vol.24, no.12, 1650-1654

http://www.packtpub.com/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 4322

[15] Sanpawat Kantabutra and Alva L. Couch (2012),
Parallel K-means Clustering Algorithm on NOWs, Technical
Journal, vol.1, no.6

[16] Domenico Talia (2002), Parallelism in Knowledge
Discovery Techniques, J. Fagerholm et al. (Eds.): PARA 2002,
LNCS 2367, pp. 127–136

[17] Dr.Urmila R. Pol (2014), Enhancing K-means
Clustering Algorithm and Proposed Parallel K-means
Clustering for Large Data Sets, International Journal of
Advanced Research in Computer Science and Software
Engineering, Volume 4, Issue 5, May 2014, 1489-1492

