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Abstract - Modern industries adopting the big data 
technologies have started shifting the data center activity 
from many smaller data centers to a few lager data centers. 
For such hyperscale data centers, energy cost is one of the 
major challenges in providing computational infrastructure. 
MapReduce, which is a distributed processing platform, is 
accepted by many enterprises and have started using it 
through cloud services with large computing clusters. 
Therefore, minimizing the energy consumption of each 
execution of the MapReduce job is of much importance for 
data centers. Most of the existing practices either focus on 
make-span improvement or consider improving energy 
efficiency at data center component level. In this paper we 
present an algorithm for improvement of energy efficiency at 
application execution level proposing the efficient task 
assignment of a MapReduce on cluster. This algorithm takes 
advantage of YARN architecture of treating resources 
generically and considers the energy consumption differences 
of different task placements on machines for energy efficient 
assignment of tasks. With the adoption of proposed task 
assignment technique in the MRAppMaster, Hadoop YARN 
shows considerable amount of improvement in energy savings 
in MapReduce job executions.  
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1. INTRODUCTION 
 
Over the last few years most of the modern industries have 
started adopting the big data technologies for uncovering 
insights and hidden patterns to explore new opportunities in 
business by enhancing customer experience, finding future 
strategies, reducing cost of existing systems or by enhancing 
security. Massive size, high diversity and unstructuredness 
possessed by big data, presents unique storage and 
computational challenges like scalability, fault tolerance, 
storage bottleneck and timeliness resulting into 
requirements of new computational paradigms. 

MapReduce is a popular platform for distributed processing 
of such a huge data set on large clusters of machines capable 
of processing data reliably in a parallel manner. With the 
acceptance of MapReduce as a computational platform, many 
enterprises started using it through multi-user cloud 
services with large computing clusters. 

 

The trend of 'hyperscale shift' [2] shows the shift of the data 
centre activity from many smaller data centres to a few 
larger data centres. For such hyperscale data centres, energy 
cost is one of the major challenges in providing 
computational infrastructure. As per the US Data Centre 
Energy Usage Report [2], in 2014 data centres in U.S. 
consumed an estimated 70 billion kWh which is 1.8% of total 
U.S. electrical consumption. Current study shows the 
increase in the consumption by about 4% from 2010 to 
2014. Expected to continue this increase in near future 
estimates consumption of 73 billion kWh energy in 2020. 

Servers, storage, network and infrastructure are the factors 
those influence the energy consumption of the data centres. 
Storage devices are becoming more efficient resulting into 
reduced energy consumption along with the reduced power 
consumption by network ports. Thus, servers are the major 
factor for energy consumption of today's data centres. 

The energy efficiency practices that many data centres have 
started following include maximizing the efficiency of each 
type of facility in data centre. While these practices considers 
data centre level components, very little attention is given 
for improving the energy efficiency at application execution 
level such as the efficient task scheduling  of a MapReduce 
job on a cluster. 

Apache Hadoop [4], which is an open-source implementation 
of Google's MapReduce framework, has been upgraded to 
Hadoop 2 or NextGen Hadoop by separating the cluster 
resource management capabilities from computational logic 
like MapReduce. With this split it allows fine-grained 
resource management resulting in better cluster utilization 
and improved scalability. The resource management 
capabilities are known as YARN. MapReduce task scheduling 
in Hadoop 1 had to consider the distinction between the map 
slots and the reduce slots, leading to under-utilization of 
cluster resources. In YARN there is an improvement in 
utilization by considering the cluster resources in the form of 
generic containers instead of separate slots for separate type 
of tasks. 

There are previous efforts of using the job profiling 
information when taking decisions of task placements on the 
nodes with the intention of energy efficiency, but these have 
not given much attention to the improvement in resource 
allocation of Hadoop YARN. 

In this paper an attempt is made to take advantage of YARN 
architecture of treating resources as a bundle of memory and 
CPU cores on which any type of task can run. While 
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considering the energy consumption differences of different 
tasks placements on machines, as demonstrated in the work 
of Mashayekhy et al. [3], the main contribution of this paper 
is to use these differences for dynamic task placements 
where the dependency between the map and reduce phase 
of a job is considered and the tasks are ranked as per this 
dependency. This rank is used in progressive phase of task 
assignment where as soon as a container gets free of 
executing a map or a reduce task it can be further utilized by 
either next map or next reduce task depending upon the 
execution progress. 

Thus the improved task scheduling algorithm for YARN 
results into better energy savings for a MapReduce job 
execution on cluster. 

These algorithms can be treated as secondary scheduling 
strategies and can be incorporated with other higher, multi-
user scheduling strategies like Fair and Capacity scheduling.  

 
2. RELATED WORK 
 
2.1 Energy-efficient resource management in 
data centers 
BEEMR architecture proposed by Chen et al. [5], splits the 
cluster into interactive and batch zones. Interactive zone 
serves interactive data analysis and uses a pool of dedicated 
machines which are kept fully powered. Energy saving is 
achieved by serving batchable jobs by batch zone which is 
kept in low-power state in-between the batches. Cardosa et 
al. [6] uses space-time trade-off in achieving energy 
efficiency by, 1) co-placing virtual machines with 
complementary resource requirements and thus reducing 
spatial wastage and 2) co-locating virtual machines with 
closely matched resources which allows the physical 
machines to be emptied at around the same time and hence 
can be suspended resulting into improved machine 
utilization. Wirtz et al. [7] focuses on energy efficiency of 
computational intensive workloads. It considers the number 
of compute nodes and DVFS scaling to improve resource 
allocation. It demonstrates that frequency scaling has large 
impact on computationally intensive workloads and thus can 
be used to scale down the voltage and hence saving energy. 
GreenHDFS proposed by Kaushik et al. [8], logically 
partitions the data centre into Hot and Cold zones. It relies 
on inherent heterogeneity in the access pattern and each 
cluster zone has different temperature characteristics. 
GreenHDFS considers the dormancy of a file to which 
temperature is inversely proportional. Thus the coldness of 
the cluster can be increased with dormancy of the files 
resulting into better energy savings. 

All these strategies can be categorized as data centre level 
energy saving techniques and do not exploit MapReduce 
phases of execution for energy conservation. 

 

2.2 Efficient resource allocation and scheduling 
in MapReduce 
 
Much of the work in improvement of MapReduce resource 
allocation is done in the perspective of reducing the 
execution time or improving the make-span of a MapReduce 
application. Realizing the existence of the synchronization 
barrier between the two phases of the MapReduce job 
execution and using it to maximize the parallelization and 
thus getting speedup is the key of SMapReduce [9]. But it 
does not pay attention to the energy conservation while 
allocating more resources to the overlapped section of Map 
phase in YARN. HaSTE [10] presents a new YARN scheduler 
which is aimed at efficiently utilizing the resources in YARN 
and reducing the make-span of the jobs. It dynamically 
schedules (prioritizes) tasks based on each task’s fitness: the 
gap between resource demand of tasks and the resource 
capacity of nodes, and urgency: refers to the importance of a 
task as per the dependency between map and reduce phases. 
Though our paper recognizes the similar dependency among 
phases, considering it for reducing the energy conservation 
has not done in previous works. Kurazumi et al. [11], focuses 
on the under-utilization of the cluster due to I/O waiting by 
the tasks which are not data-local. It calculates the I/O wait 
percentage for each CPU and adds or removes map slots 
accordingly. Ibrahim et al. [12], focus on reducing the non-
local tasks and balancing the number of map tasks across 
f=different nodes by considering the probability of 
scheduling a map tasks on a given machine depending on the 
replicas of the input data. Speedup is gained by improving 
data locality in execution. None of these works focuses on 
energy consumption of MapReduce execution. 

 
2.3 Energy-Efficient resource allocation in 

MapReduce 
2.4  

Energy aware load management framework proposed by 
Shao et al. [13], employs a prediction module which predicts 
the number of running workload tasks in near future by 
continuously sampling past and current records. The control 
module side-by-side employs node state control strategy by 
turning on the proper number of nodes as per the predicted 
value. Turning off these nodes for a specific duration results 
into energy saving. SLA aware energy efficient scheduling 
proposed by Li et al. [14], for YARN uses job profiling of jobs 
to get performance characteristics of different phases of a 
MapReduce application. DVFS based controller is used for 
YARN resource provision thus utilizing the slack time for 
system energy optimization. 

Mashayekhy et al., is the first work towards energy efficient 
scheduling in which energy consumption differences in task 
placement are considered. Even this work exploits the job 
profile information for efficient task placements. 
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These works can be categorized as cluster-level strategies 
where different aspects of map and reduce tasks are 
considered. Inspired from EMRSA algorithms our algorithms 
use Energy-to-Length Ratio (ELR) for prioritizing the tasks 
for a free container. EMRSA is not much adapted to Hadoop 
YARN while our algorithms take advantages of genericness 
of the containers provided by YARN architecture and thus 
significant utilization improvement is possible resulting into 
better energy saving by balancing the resource allocation 
among different phases of the MapReduce job execution. 

 
3. BACKGROUND AND MOTIVATION 
 
3.1 MapReduce  
 
MapReduce [1] is a software framework for processing huge 
data sets in a distributed manner over a cluster of 
commodity hardware. MapReduce can be viewed as a 
specialization of the "split-apply-combine" strategy for data 
processing. The objective of this programming model is to 
speed up the data processing by parallelizing the execution 
of the job across multiple nodes. 

Apache Hadoop, which is an open-source implementation of 
MapReduce model, along with its storage part Hadoop 
Distributed File System (HDFS), is designed to scale up to 
thousands of nodes each with dedicated computation and 
storage capabilities. HDFS is a distributed file system that 
splits the file into blocks and distributes them across nodes 
in a cluster, thus providing a high-throughput access to data 
for running applications. MapReduce transfers the packaged 
code into nodes to process data parallelly. The data-locality 
optimizes the spatial efficiency where nodes manipulate the 
data they have access to, and results into faster and efficient 
processing. Due to the chunk replication, Hadoop system is 
considered as a fault-tolerant and thus reliable data 
processing. Thus, the key advantage of the Hadoop 
MapReduce framework  over some existing parallel 
paradigms(e.g. grid computing and GPU) are fault tolerance 
and high-throughput data processing via MapReduce 
processing and HDFS. 

 
3.2 MapReduce Task Scheduling  
 
MapReduce creates multiple tasks and executes them on 
multiple nodes. As there many combinations of tasks and 
machines are possible, there arise a problem of deciding 
which machine should execute which task. Here come the 
different scheduling strategies in picture. A scheduling policy 
can be developed keeping different objectives in mind like, 
considering user's priorities of job selection, considering 
data locality for faster execution, improving resource 
utilization, reducing network congestion, improving the 
reliability of job execution and so on. Taking the different 
objectives into account, achieving a balance between them is 
an NP-hard problem. Hence many scheduler designers have 
proposed different heuristics for different objectives. 

Important thing one must pay attention to is that in-
appropriate scheduling of tasks across machines may fail to 
exploit the true potential of the parallelization. 

While the most common objective of the scheduling policy is 
to minimize the completion time of a parallel application by 
properly allocating the tasks, our objective is to minimize the 
energy consumption of a single job execution on cluster with 
improvement in cluster utilization and considering the 
energy consumption differences of different tasks on 
different machines. 

 
3.2.1 MapReduce scheduling in Hadoop  
Based on the objective, a scheduling policy can be designed 
to run at different levels: 

 User level: Fair, Capacity scheduler 

 Job level: FCFS, Fairness- based, SLA-based 

 Task level: map task level(replica-aware), reduce 
task level(locality-aware), speculative task 
level(latency-aware) scheduling 
 

3.2.2 Resource sharing schedulers in YARN  
 
Fair scheduler offers equal distribution of resources among 
different jobs when there are different types of jobs are 
ready to run. It overcomes the drawback of long jobs 
blocking small jobs, associated with FCFS scheduling. By 
having limits on running/pending tasks and jobs from a 
single user, Capacity scheduler provides minimum capacity 
guarantee for each user. 

These schedulers do not consider the impact of task 
scheduling of MapReduce jobs on the system energy 
consumption. Our solution considers the energy 
consumption of each task and also pays attention to the 
dependency between map and reduce phase while allocating 
resources to the tasks resulting into energy efficient job 
execution. 

 
3.2 Improvements in resource utilization in 
Hadoop  
 
In Hadoop v1, user submits MapReduce jobs to the 
JobTracker where it pushes work to the available nodes in 
the cluster. The TaskTrakers on each machine, run the map 
and the reduce tasks on map and reduce slots respectively. 

The inflexible 'slot' configuration of nodes either as Map or 
Reduce results into under-utilization of the cluster when 
more map or reduce tasks are running. Also, there is a limit 
on the nodes per cluster due to single JobTracker, resulting 
into scalability bottleneck. Taking these limitations into 
account Hadoop has evolved into NextGen YARN. In YARN 
JobTracker of old Hadoop is split into two components: 1] 
ResourceManager: globally manages assignment of 
resources by keeping track of NodeManagers and available 
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resources, allocating these resources to applications, and 2] 
Application Master: one for each application, manages 
application life-cycle and asks for appropriate resource 
containers to run tasks. 

Scheduling policy on which we are working goes as a 
pluggable piece of code in a scheduler, which is a sub-part of 
the ResourceManager along with the ApplicationsManager 
which takes care of running ApplicationMasters. This 
separation of application specific tasks from resource 
management, allows ResourceManager to focus on better 
resource management resulting into improved scalability. 
NodeManager on each slave node manages user processes 
on that machine and provides computational resources to 
them in terms of containers. ResourceManager along with 
NodeManager forms the computational fabric of the cluster. 

One of the major architectural features of the YARN is that it 
treats the cluster resources as a combination of memories 
and CPU cores. These combinations are known as the 
containers and allow a more precise control over the cluster. 

Our paper takes the advantage of the genericness of these 
containers on which any type of the tasks can be run one 
after another. Containers can be seen as a request to hold 
resources on YARN cluster and there is no need to configure 
the system resources as a fixed number of map slots and 
reduce slots. This feature allows us to consider dependency 
between the map and the reduce phase while allocating 
resources to the tasks resulting into better utilization of the 
cluster. This opportunity along with energy consumption 
differences of tasks helps us to reduce the energy 
consumption of a MapReduce job execution. 
 

4. ENERGY EFFICIENCY IN MAPREDUCE TASK 
SCHEDULING 

 
In MapReduce job execution, input data blocks read by map 
tasks are processed into intermediate results, available to 
the reduce tasks as input. Map phase can be divided into 
three sub-phases: map, sort and spill phase. Reduce phase 
also consists of three sub-phases shuffle, sort and reduce. 
Shuffle phase transfers intermediate results to reducers. As 
soon as a single map task has finished its execution, the 
intermediate outputs are transferred to nodes on which 
reduce tasks wants them. Thus, shuffle phase run 
concurrently with the running map tasks. Here we can see 
that, though a sub-phase of reduce phase can start running in 
parallel to remaining of the map phase, actual task of 
reducing cannot be started before the end of the all map 
tasks. 

4.1 System Considerations 
 
The number of map tasks is driven by the number of input 
blocks which may depend on the input file size and the block 
size configured for the system. The number of reduce tasks is 

usually application specific and characterizes the job as 
reduce-heavy or map-heavy. 

YARN cluster resources are considered as a fixed number (C) 
of containers, where each container is a combination of 
memory and CPU cores. Each task, Map or Reduce, runs on 
one container resource at a time. We are considering a big 
data job where number of Map tasks (M) and Reduce tasks 
(R) are larger than the available number of containers. As we 
are considering the heterogeneous cluster, a container may 
execute some tasks faster than others. Similarly, energy 
consumption of the tasks execution varies with the task-
container combination. The time of execution of a task 
represents its 'length'. Thus, the Energy to Length Ratio 
(ELR) can be seen as the major decisive factor in prioritizing 
the tasks to run on the available container, where the task 
with lowest ELR are given preference. 
 

4.1.1 Energy-Efficient Task Scheduling Problem  
 
Consider  variable denoting the assignment of task  to 

container . We want to minimize the energy consumption of 

a job with  tasks. This problem can be stated as, 

 Minimize 

 

 Subject to, 

 

Where  denotes the amount of energy required by 

task  to execute with container , and 

 

The constraint ensured that every task gets assigned to a 
container. 
 

4.1.2 Prioritizing the tasks to run on the free 
container 
 
The tasks to be run on a container when it's get free are 
prioritized by ranking tasks, 1] As per the ELR, and 2] As per 
the phase progress. When there are no tasks running on the 
cluster, each container is ready with the list of tasks which 
are sorted based on the ELR ratio for that particular 
container. As the execution of the job moves forward, the 
phase progress score of each task is taken into account along 
with the ELR for sorting the remaining tasks. 
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5. SCHEDULING ALGORITHM 
 

Task scheduling takes place as shown in the following 
Progressive task assignment. 
 

5.1 Progressive task assignment 
 
After all the containers are assigned with tasks in initial 
container assignments, the execution of the tasks moves 
forward. As soon as any container finishes the execution of 
the task it signals its availability to the ResourceManager. 
 
Result:  remaining task assignment 

 Container available for execution  

 Sorted unassigned Map and Reduce tasks  

based on  

if   is empty then 

return  

end 

 

 
Algorithm -1: Progressive Assignment  

 

For this free container the next task is chosen based on the 
rank which is calculated as follows, 

 

Where  is the rank of task  w.r.t container  

 and .   denotes the Progress Score of 

task  w.r.t container  and is calculated depending on the 

type of the task as, 

 

 

if  then 

 
else 
  

end if 
 
In above calculation, a reduce task has a preference over 
map task if the ratio of currently running reduce task to the 
total running tasks is less than the current progress of the 

map tasks. Here,  and  denotes the number of 

currently running map and reduce tasks respectively, while 
 are the number of map tasks which are completed 

till this moment. 

6. EVALUATION 
 
The performance evaluation of the proposed algorithm is 
done by performing extensive experiments on Hadoop YARN 
cluster. 
 

6.1 Experimental Setup 
 
We used HiBench benchmark suit and performed 
experiments to measure energy and run-time for a number 
of MapReduce benchmark workloads of HiBench. The 
experimental Hadoop YARN cluster consist four nodes, one 
of which is a Master node. The Master node is configured 
with 16GB memory, 4 3.2GHz Intel quad-core processors and 
a Hard Drive of 1TB. The three slaves: slave01, slave02, and 
slave03, are composed of 8GB memory, 4 3.2GHz Intel quad-
core processors and a Hard Drives of 1TB each. Thus the 
cluster has 40GB memory, 16 processors and 4TB of storage 
in total. 

jRAPL [15], which is a framework for profiling Java programs 
executing on CPUs, is used for energy measurement. RAPL 
used by jRAPL is a set of low-level interfaces which can 
monitor energy consumption data of different hardware 
levels. 

The performance of our algorithm is evaluated based on two 
metrics: Energy Consumption and Execution Time. 

Several clustering and sorting workloads provided by 
HiBench suit are run and energy profiled. We run a single job 
at a time and calculate its start time and finish time to 
calculate the job's execution time. In similar fashion, we 
calculate energy consumption of that job with the help of 
jRAPL.  

We implemented our algorithm on top of the Hadoop YARN 
2.9.0. The default job scheduler adopted by the YARN 
Resource Manager, schedules the entire job for execution 
without any delay. 

We consider different combinations of map and reduce task 
numbers. As this paper focuses on task scheduling of 
MapReduce applications only, we consider the Application 
Master component specific to MapReduce application, 
known as MRAppMaster. MRAppMaster is responsible for 
assigning tasks to the available containers. 
 

6.2 Experimental Result 
 
The performance of the algorithm along with Hadoop V1 and 
YARN (with existing MRAppMaster) is analysed in this 
subsection. Figure 1 plots the energy consumption of the 
jobs scheduled by the above considered configurations: 
proposed, Hadoop V1, YARN; for micro-benchmark TeraSort. 
Figure 2 shows the energy consumption of the jobs 
scheduled by these system configurations for Bayesian 
Classification Machine Learning benchmark. Results in 
Figure 1 show that the proposed algorithm is able to find 
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task assignments requiring an average of 21% less energy 
compared to those obtained by Hadoop YARN and an 
average 34% less compared to those obtained by Hadoop V1. 

 

Figure -1: Performance on TeraSort: Energy Consumption 
 

 

Figure -2: Performance on Bayesian Classification: Energy 
Consumption 

 
Results in Figure 2 show that the proposed algorithm could 
assign the tasks resulting into an average of 19% and 22% 
less energy consumption compared to those obtained by 
Hadoop YARN and Hadoop V1, respectively. 

Figure 3 and Figure 4 presents execution time of the 
algorithm. These results show that the proposed algorithm 
and the existing systems: Hadoop YARN and Hadoop V1 find 
the solution with almost same amount of time. Thus, the 
proposed algorithm can be used for scheduling tasks of big 
data application without negatively impacting the make-
span of the applications. 

 

Figure -3: Performance on TeraSort: Execution Time 
 

 

Figure -4: Performance on Bayesian Classification: 
Execution Time 

 

6. CONCLUSION 
 
With the acceptance of MapReduce as a computational 
platform and executing big data applications on large 
clusters, reducing energy consumption through efficient 
assignment in MapReduce jobs can have a significant impact 
on energy cost of data centres. The proposed algorithm 
assigns the individual tasks to the available containers so as 
to consume least amount of energy and make a full 
utilization of cluster resources through the map and reduce 
phases of the MapReduce job. This task assignment is done 
without negatively impacting the make-span of the 
application and thus, making it suitable to be used for 
scheduling big data applications. 
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