
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 4390

Energy Efficient MapReduce Task Scheduling on YARN

Sushant Shinde1, Sowmiya Raksha Nayak2

1P.G. Student, Department of Computer Engineering, V.J.T.I, Mumbai, Maharashtra, India
2Assistant Professor, Department of Computer Engineering, V.J.T.I, Mumbai, Maharashtra, India

---***---

Abstract - Modern industries adopting the big data
technologies have started shifting the data center activity
from many smaller data centers to a few lager data centers.
For such hyperscale data centers, energy cost is one of the
major challenges in providing computational infrastructure.
MapReduce, which is a distributed processing platform, is
accepted by many enterprises and have started using it
through cloud services with large computing clusters.
Therefore, minimizing the energy consumption of each
execution of the MapReduce job is of much importance for
data centers. Most of the existing practices either focus on
make-span improvement or consider improving energy
efficiency at data center component level. In this paper we
present an algorithm for improvement of energy efficiency at
application execution level proposing the efficient task
assignment of a MapReduce on cluster. This algorithm takes
advantage of YARN architecture of treating resources
generically and considers the energy consumption differences
of different task placements on machines for energy efficient
assignment of tasks. With the adoption of proposed task
assignment technique in the MRAppMaster, Hadoop YARN
shows considerable amount of improvement in energy savings
in MapReduce job executions.

Key Words: Energy efficiency, MapReduce, YARN, scheduler,
resource allocation.

1. INTRODUCTION

Over the last few years most of the modern industries have
started adopting the big data technologies for uncovering
insights and hidden patterns to explore new opportunities in
business by enhancing customer experience, finding future
strategies, reducing cost of existing systems or by enhancing
security. Massive size, high diversity and unstructuredness
possessed by big data, presents unique storage and
computational challenges like scalability, fault tolerance,
storage bottleneck and timeliness resulting into
requirements of new computational paradigms.

MapReduce is a popular platform for distributed processing
of such a huge data set on large clusters of machines capable
of processing data reliably in a parallel manner. With the
acceptance of MapReduce as a computational platform, many
enterprises started using it through multi-user cloud
services with large computing clusters.

The trend of 'hyperscale shift' [2] shows the shift of the data
centre activity from many smaller data centres to a few
larger data centres. For such hyperscale data centres, energy
cost is one of the major challenges in providing
computational infrastructure. As per the US Data Centre
Energy Usage Report [2], in 2014 data centres in U.S.
consumed an estimated 70 billion kWh which is 1.8% of total
U.S. electrical consumption. Current study shows the
increase in the consumption by about 4% from 2010 to
2014. Expected to continue this increase in near future
estimates consumption of 73 billion kWh energy in 2020.

Servers, storage, network and infrastructure are the factors
those influence the energy consumption of the data centres.
Storage devices are becoming more efficient resulting into
reduced energy consumption along with the reduced power
consumption by network ports. Thus, servers are the major
factor for energy consumption of today's data centres.

The energy efficiency practices that many data centres have
started following include maximizing the efficiency of each
type of facility in data centre. While these practices considers
data centre level components, very little attention is given
for improving the energy efficiency at application execution
level such as the efficient task scheduling of a MapReduce
job on a cluster.

Apache Hadoop [4], which is an open-source implementation
of Google's MapReduce framework, has been upgraded to
Hadoop 2 or NextGen Hadoop by separating the cluster
resource management capabilities from computational logic
like MapReduce. With this split it allows fine-grained
resource management resulting in better cluster utilization
and improved scalability. The resource management
capabilities are known as YARN. MapReduce task scheduling
in Hadoop 1 had to consider the distinction between the map
slots and the reduce slots, leading to under-utilization of
cluster resources. In YARN there is an improvement in
utilization by considering the cluster resources in the form of
generic containers instead of separate slots for separate type
of tasks.

There are previous efforts of using the job profiling
information when taking decisions of task placements on the
nodes with the intention of energy efficiency, but these have
not given much attention to the improvement in resource
allocation of Hadoop YARN.

In this paper an attempt is made to take advantage of YARN
architecture of treating resources as a bundle of memory and
CPU cores on which any type of task can run. While

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 4391

considering the energy consumption differences of different
tasks placements on machines, as demonstrated in the work
of Mashayekhy et al. [3], the main contribution of this paper
is to use these differences for dynamic task placements
where the dependency between the map and reduce phase
of a job is considered and the tasks are ranked as per this
dependency. This rank is used in progressive phase of task
assignment where as soon as a container gets free of
executing a map or a reduce task it can be further utilized by
either next map or next reduce task depending upon the
execution progress.

Thus the improved task scheduling algorithm for YARN
results into better energy savings for a MapReduce job
execution on cluster.

These algorithms can be treated as secondary scheduling
strategies and can be incorporated with other higher, multi-
user scheduling strategies like Fair and Capacity scheduling.

2. RELATED WORK

2.1 Energy-efficient resource management in
data centers
BEEMR architecture proposed by Chen et al. [5], splits the
cluster into interactive and batch zones. Interactive zone
serves interactive data analysis and uses a pool of dedicated
machines which are kept fully powered. Energy saving is
achieved by serving batchable jobs by batch zone which is
kept in low-power state in-between the batches. Cardosa et
al. [6] uses space-time trade-off in achieving energy
efficiency by, 1) co-placing virtual machines with
complementary resource requirements and thus reducing
spatial wastage and 2) co-locating virtual machines with
closely matched resources which allows the physical
machines to be emptied at around the same time and hence
can be suspended resulting into improved machine
utilization. Wirtz et al. [7] focuses on energy efficiency of
computational intensive workloads. It considers the number
of compute nodes and DVFS scaling to improve resource
allocation. It demonstrates that frequency scaling has large
impact on computationally intensive workloads and thus can
be used to scale down the voltage and hence saving energy.
GreenHDFS proposed by Kaushik et al. [8], logically
partitions the data centre into Hot and Cold zones. It relies
on inherent heterogeneity in the access pattern and each
cluster zone has different temperature characteristics.
GreenHDFS considers the dormancy of a file to which
temperature is inversely proportional. Thus the coldness of
the cluster can be increased with dormancy of the files
resulting into better energy savings.

All these strategies can be categorized as data centre level
energy saving techniques and do not exploit MapReduce
phases of execution for energy conservation.

2.2 Efficient resource allocation and scheduling
in MapReduce

Much of the work in improvement of MapReduce resource
allocation is done in the perspective of reducing the
execution time or improving the make-span of a MapReduce
application. Realizing the existence of the synchronization
barrier between the two phases of the MapReduce job
execution and using it to maximize the parallelization and
thus getting speedup is the key of SMapReduce [9]. But it
does not pay attention to the energy conservation while
allocating more resources to the overlapped section of Map
phase in YARN. HaSTE [10] presents a new YARN scheduler
which is aimed at efficiently utilizing the resources in YARN
and reducing the make-span of the jobs. It dynamically
schedules (prioritizes) tasks based on each task’s fitness: the
gap between resource demand of tasks and the resource
capacity of nodes, and urgency: refers to the importance of a
task as per the dependency between map and reduce phases.
Though our paper recognizes the similar dependency among
phases, considering it for reducing the energy conservation
has not done in previous works. Kurazumi et al. [11], focuses
on the under-utilization of the cluster due to I/O waiting by
the tasks which are not data-local. It calculates the I/O wait
percentage for each CPU and adds or removes map slots
accordingly. Ibrahim et al. [12], focus on reducing the non-
local tasks and balancing the number of map tasks across
f=different nodes by considering the probability of
scheduling a map tasks on a given machine depending on the
replicas of the input data. Speedup is gained by improving
data locality in execution. None of these works focuses on
energy consumption of MapReduce execution.

2.3 Energy-Efficient resource allocation in

MapReduce
2.4

Energy aware load management framework proposed by
Shao et al. [13], employs a prediction module which predicts
the number of running workload tasks in near future by
continuously sampling past and current records. The control
module side-by-side employs node state control strategy by
turning on the proper number of nodes as per the predicted
value. Turning off these nodes for a specific duration results
into energy saving. SLA aware energy efficient scheduling
proposed by Li et al. [14], for YARN uses job profiling of jobs
to get performance characteristics of different phases of a
MapReduce application. DVFS based controller is used for
YARN resource provision thus utilizing the slack time for
system energy optimization.

Mashayekhy et al., is the first work towards energy efficient
scheduling in which energy consumption differences in task
placement are considered. Even this work exploits the job
profile information for efficient task placements.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 4392

These works can be categorized as cluster-level strategies
where different aspects of map and reduce tasks are
considered. Inspired from EMRSA algorithms our algorithms
use Energy-to-Length Ratio (ELR) for prioritizing the tasks
for a free container. EMRSA is not much adapted to Hadoop
YARN while our algorithms take advantages of genericness
of the containers provided by YARN architecture and thus
significant utilization improvement is possible resulting into
better energy saving by balancing the resource allocation
among different phases of the MapReduce job execution.

3. BACKGROUND AND MOTIVATION

3.1 MapReduce

MapReduce [1] is a software framework for processing huge
data sets in a distributed manner over a cluster of
commodity hardware. MapReduce can be viewed as a
specialization of the "split-apply-combine" strategy for data
processing. The objective of this programming model is to
speed up the data processing by parallelizing the execution
of the job across multiple nodes.

Apache Hadoop, which is an open-source implementation of
MapReduce model, along with its storage part Hadoop
Distributed File System (HDFS), is designed to scale up to
thousands of nodes each with dedicated computation and
storage capabilities. HDFS is a distributed file system that
splits the file into blocks and distributes them across nodes
in a cluster, thus providing a high-throughput access to data
for running applications. MapReduce transfers the packaged
code into nodes to process data parallelly. The data-locality
optimizes the spatial efficiency where nodes manipulate the
data they have access to, and results into faster and efficient
processing. Due to the chunk replication, Hadoop system is
considered as a fault-tolerant and thus reliable data
processing. Thus, the key advantage of the Hadoop
MapReduce framework over some existing parallel
paradigms(e.g. grid computing and GPU) are fault tolerance
and high-throughput data processing via MapReduce
processing and HDFS.

3.2 MapReduce Task Scheduling

MapReduce creates multiple tasks and executes them on
multiple nodes. As there many combinations of tasks and
machines are possible, there arise a problem of deciding
which machine should execute which task. Here come the
different scheduling strategies in picture. A scheduling policy
can be developed keeping different objectives in mind like,
considering user's priorities of job selection, considering
data locality for faster execution, improving resource
utilization, reducing network congestion, improving the
reliability of job execution and so on. Taking the different
objectives into account, achieving a balance between them is
an NP-hard problem. Hence many scheduler designers have
proposed different heuristics for different objectives.

Important thing one must pay attention to is that in-
appropriate scheduling of tasks across machines may fail to
exploit the true potential of the parallelization.

While the most common objective of the scheduling policy is
to minimize the completion time of a parallel application by
properly allocating the tasks, our objective is to minimize the
energy consumption of a single job execution on cluster with
improvement in cluster utilization and considering the
energy consumption differences of different tasks on
different machines.

3.2.1 MapReduce scheduling in Hadoop
Based on the objective, a scheduling policy can be designed
to run at different levels:

 User level: Fair, Capacity scheduler

 Job level: FCFS, Fairness- based, SLA-based

 Task level: map task level(replica-aware), reduce
task level(locality-aware), speculative task
level(latency-aware) scheduling

3.2.2 Resource sharing schedulers in YARN

Fair scheduler offers equal distribution of resources among
different jobs when there are different types of jobs are
ready to run. It overcomes the drawback of long jobs
blocking small jobs, associated with FCFS scheduling. By
having limits on running/pending tasks and jobs from a
single user, Capacity scheduler provides minimum capacity
guarantee for each user.

These schedulers do not consider the impact of task
scheduling of MapReduce jobs on the system energy
consumption. Our solution considers the energy
consumption of each task and also pays attention to the
dependency between map and reduce phase while allocating
resources to the tasks resulting into energy efficient job
execution.

3.2 Improvements in resource utilization in
Hadoop

In Hadoop v1, user submits MapReduce jobs to the
JobTracker where it pushes work to the available nodes in
the cluster. The TaskTrakers on each machine, run the map
and the reduce tasks on map and reduce slots respectively.

The inflexible 'slot' configuration of nodes either as Map or
Reduce results into under-utilization of the cluster when
more map or reduce tasks are running. Also, there is a limit
on the nodes per cluster due to single JobTracker, resulting
into scalability bottleneck. Taking these limitations into
account Hadoop has evolved into NextGen YARN. In YARN
JobTracker of old Hadoop is split into two components: 1]
ResourceManager: globally manages assignment of
resources by keeping track of NodeManagers and available

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 4393

resources, allocating these resources to applications, and 2]
Application Master: one for each application, manages
application life-cycle and asks for appropriate resource
containers to run tasks.

Scheduling policy on which we are working goes as a
pluggable piece of code in a scheduler, which is a sub-part of
the ResourceManager along with the ApplicationsManager
which takes care of running ApplicationMasters. This
separation of application specific tasks from resource
management, allows ResourceManager to focus on better
resource management resulting into improved scalability.
NodeManager on each slave node manages user processes
on that machine and provides computational resources to
them in terms of containers. ResourceManager along with
NodeManager forms the computational fabric of the cluster.

One of the major architectural features of the YARN is that it
treats the cluster resources as a combination of memories
and CPU cores. These combinations are known as the
containers and allow a more precise control over the cluster.

Our paper takes the advantage of the genericness of these
containers on which any type of the tasks can be run one
after another. Containers can be seen as a request to hold
resources on YARN cluster and there is no need to configure
the system resources as a fixed number of map slots and
reduce slots. This feature allows us to consider dependency
between the map and the reduce phase while allocating
resources to the tasks resulting into better utilization of the
cluster. This opportunity along with energy consumption
differences of tasks helps us to reduce the energy
consumption of a MapReduce job execution.

4. ENERGY EFFICIENCY IN MAPREDUCE TASK
SCHEDULING

In MapReduce job execution, input data blocks read by map
tasks are processed into intermediate results, available to
the reduce tasks as input. Map phase can be divided into
three sub-phases: map, sort and spill phase. Reduce phase
also consists of three sub-phases shuffle, sort and reduce.
Shuffle phase transfers intermediate results to reducers. As
soon as a single map task has finished its execution, the
intermediate outputs are transferred to nodes on which
reduce tasks wants them. Thus, shuffle phase run
concurrently with the running map tasks. Here we can see
that, though a sub-phase of reduce phase can start running in
parallel to remaining of the map phase, actual task of
reducing cannot be started before the end of the all map
tasks.

4.1 System Considerations

The number of map tasks is driven by the number of input
blocks which may depend on the input file size and the block
size configured for the system. The number of reduce tasks is

usually application specific and characterizes the job as
reduce-heavy or map-heavy.

YARN cluster resources are considered as a fixed number (C)
of containers, where each container is a combination of
memory and CPU cores. Each task, Map or Reduce, runs on
one container resource at a time. We are considering a big
data job where number of Map tasks (M) and Reduce tasks
(R) are larger than the available number of containers. As we
are considering the heterogeneous cluster, a container may
execute some tasks faster than others. Similarly, energy
consumption of the tasks execution varies with the task-
container combination. The time of execution of a task
represents its 'length'. Thus, the Energy to Length Ratio
(ELR) can be seen as the major decisive factor in prioritizing
the tasks to run on the available container, where the task
with lowest ELR are given preference.

4.1.1 Energy-Efficient Task Scheduling Problem

Consider variable denoting the assignment of task to

container . We want to minimize the energy consumption of

a job with tasks. This problem can be stated as,

 Minimize

 Subject to,

Where denotes the amount of energy required by

task to execute with container , and

The constraint ensured that every task gets assigned to a
container.

4.1.2 Prioritizing the tasks to run on the free
container

The tasks to be run on a container when it's get free are
prioritized by ranking tasks, 1] As per the ELR, and 2] As per
the phase progress. When there are no tasks running on the
cluster, each container is ready with the list of tasks which
are sorted based on the ELR ratio for that particular
container. As the execution of the job moves forward, the
phase progress score of each task is taken into account along
with the ELR for sorting the remaining tasks.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 4394

5. SCHEDULING ALGORITHM

Task scheduling takes place as shown in the following
Progressive task assignment.

5.1 Progressive task assignment

After all the containers are assigned with tasks in initial
container assignments, the execution of the tasks moves
forward. As soon as any container finishes the execution of
the task it signals its availability to the ResourceManager.

Result: remaining task assignment

 Container available for execution

 Sorted unassigned Map and Reduce tasks

based on

if is empty then

return

end

Algorithm -1: Progressive Assignment

For this free container the next task is chosen based on the
rank which is calculated as follows,

Where is the rank of task w.r.t container

 and . denotes the Progress Score of

task w.r.t container and is calculated depending on the

type of the task as,

if then

else

end if

In above calculation, a reduce task has a preference over
map task if the ratio of currently running reduce task to the
total running tasks is less than the current progress of the

map tasks. Here, and denotes the number of

currently running map and reduce tasks respectively, while
 are the number of map tasks which are completed

till this moment.

6. EVALUATION

The performance evaluation of the proposed algorithm is
done by performing extensive experiments on Hadoop YARN
cluster.

6.1 Experimental Setup

We used HiBench benchmark suit and performed
experiments to measure energy and run-time for a number
of MapReduce benchmark workloads of HiBench. The
experimental Hadoop YARN cluster consist four nodes, one
of which is a Master node. The Master node is configured
with 16GB memory, 4 3.2GHz Intel quad-core processors and
a Hard Drive of 1TB. The three slaves: slave01, slave02, and
slave03, are composed of 8GB memory, 4 3.2GHz Intel quad-
core processors and a Hard Drives of 1TB each. Thus the
cluster has 40GB memory, 16 processors and 4TB of storage
in total.

jRAPL [15], which is a framework for profiling Java programs
executing on CPUs, is used for energy measurement. RAPL
used by jRAPL is a set of low-level interfaces which can
monitor energy consumption data of different hardware
levels.

The performance of our algorithm is evaluated based on two
metrics: Energy Consumption and Execution Time.

Several clustering and sorting workloads provided by
HiBench suit are run and energy profiled. We run a single job
at a time and calculate its start time and finish time to
calculate the job's execution time. In similar fashion, we
calculate energy consumption of that job with the help of
jRAPL.

We implemented our algorithm on top of the Hadoop YARN
2.9.0. The default job scheduler adopted by the YARN
Resource Manager, schedules the entire job for execution
without any delay.

We consider different combinations of map and reduce task
numbers. As this paper focuses on task scheduling of
MapReduce applications only, we consider the Application
Master component specific to MapReduce application,
known as MRAppMaster. MRAppMaster is responsible for
assigning tasks to the available containers.

6.2 Experimental Result

The performance of the algorithm along with Hadoop V1 and
YARN (with existing MRAppMaster) is analysed in this
subsection. Figure 1 plots the energy consumption of the
jobs scheduled by the above considered configurations:
proposed, Hadoop V1, YARN; for micro-benchmark TeraSort.
Figure 2 shows the energy consumption of the jobs
scheduled by these system configurations for Bayesian
Classification Machine Learning benchmark. Results in
Figure 1 show that the proposed algorithm is able to find

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 4395

task assignments requiring an average of 21% less energy
compared to those obtained by Hadoop YARN and an
average 34% less compared to those obtained by Hadoop V1.

Figure -1: Performance on TeraSort: Energy Consumption

Figure -2: Performance on Bayesian Classification: Energy
Consumption

Results in Figure 2 show that the proposed algorithm could
assign the tasks resulting into an average of 19% and 22%
less energy consumption compared to those obtained by
Hadoop YARN and Hadoop V1, respectively.

Figure 3 and Figure 4 presents execution time of the
algorithm. These results show that the proposed algorithm
and the existing systems: Hadoop YARN and Hadoop V1 find
the solution with almost same amount of time. Thus, the
proposed algorithm can be used for scheduling tasks of big
data application without negatively impacting the make-
span of the applications.

Figure -3: Performance on TeraSort: Execution Time

Figure -4: Performance on Bayesian Classification:
Execution Time

6. CONCLUSION

With the acceptance of MapReduce as a computational
platform and executing big data applications on large
clusters, reducing energy consumption through efficient
assignment in MapReduce jobs can have a significant impact
on energy cost of data centres. The proposed algorithm
assigns the individual tasks to the available containers so as
to consume least amount of energy and make a full
utilization of cluster resources through the map and reduce
phases of the MapReduce job. This task assignment is done
without negatively impacting the make-span of the
application and thus, making it suitable to be used for
scheduling big data applications.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data

processing on large clusters,” in Proc. of the 6th USENIX

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 05 | May 2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 4396

Symposium on Operating System Design and
Implementation, 2004.

[2] Arman Shehabi, Sarah Josephine Smith, Dale A. Sartor,
Richard E. Brown, Magnus Herrlin, Jonathan G. Koomey,
Eric R. Masanet, Horner, Nathaniel, Inês Lima Azevedo,
Lintner, William, "United States Data Center Energy
Usage Report", 2016

[3] L. Mashayekhy, M. Nejad, D. Grosu, Q. Zhang and W.S.
Shi."Energy-Aware Scheduling of MapReduce Jobs for
Big Data Applications." Transactions on Parallel and
Distributed Systems, IEEE, 2015.

[4] Apache. Apache Hadoop YARN. [Online]. Available:
http://hadoop.apache.org/docs/r2.9.0/hadoop-
yarn/hadoop-yarn-site/YARN.html

[5] Y. Chen, S. Alspaugh, D. Borthakur, and R. Katz, “Energy
efficiency for large-scale mapreduce workloads with
significant interactive analysis,” in Proc. of the 7th ACM
European Conf. on Computer Systems, 2012.

[6] M. Cardosa, A. Singh, H. Pucha, and A. Chandra,
“Exploiting spatio-temporal tradeoffs for energy-aware
mapreduce in the cloud,” IEEE Transactions on
Computers, 2012.

[7] T. Wirtz and R. Ge, “Improving mapreduce energy
efficiency for computation intensive workloads,” in Proc.
of the IEEE International Green Computing Conference
and Workshops, 2011.

[8] R. T. Kaushik, M. Bhandarkar, and K. Nahrstedt,
“Evaluation and analysis of greenhdfs: A self-adaptive,
energy-conserving variant of the hadoop distributed file
system,” in Proc. 2nd IEEE Int’l Conf. on Cloud
Computing Technology and Science, 2010.

[9] F Liang, F C.M. Lau, “SMapReduce: Optimising Resource
Allocation by Managing Working Slots at Runtime,” in
Proc. 29th IEEE International Parallel and Distributed
Processing Symposium, 2015.

[10] Y. Yao, J. Wang, B. Sheng, J. Lin and N. Mi, “HaSTE:
Hadoop YARN Scheduling Based on Task-Dependency
and Resource-Demand,” in Proc. of the IEEE
International Conference on Cloud Computing, 2014.

[11] S. Kurazumi, T. Tsumura, S. Saito, and H. Matsuo,
“Dynamic processing slots scheduling for i/o intensive
jobs of Hadoop mapreduce,” in Proc. of the 3rd IEEE
International Conference on Networking and
Computing, 2012.

[12] S. Ibrahim, H. Jin, L. Lu, B. He, G. Antoniu, and S. Wu,
“Maestro: Replica-aware map scheduling for
mapreduce,” in Proc. 12th IEEE/ACM Int’l Symp. on
Cluster, Cloud and Grid Comp., 2012.

[13] Y. Shao, C. Li, W. Dong, and Y. Liu, “Energy-Aware
Dynamic Resource Allocation on Hadoop YARN Cluster,”
in Proc. of the 18th IEEE International Conference on
High Performance Computing and Communications,
2016.

[14] P. Li, L. Ju, Z. Jia, and Z. Sun, “SLA-Aware Energy-Efficient
Scheduling Scheme for Hadoop YARN,” in Proc. of the
17th IEEE International Conference on High
Performance Computing and Communications (HPCC),
2015.

[15] jRAPL. A framework for profiling energy consumption of
Java programs [Online]. Available:
http://kliu20.github.io/jRAPL/

http://hadoop.apache.org/docs/r2.9.0/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/r2.9.0/hadoop-yarn/hadoop-yarn-site/YARN.html

