
          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

               Volume: 05 Issue: 06 | June 2018                    www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 6.171       |       ISO 9001:2008 Certified Journal       |        Page 870 
 

A Study on parallization of genetic algorithms on GPUs Using CUDA 

Sagar U S 

Assistant Professor Department of Computer Science and Engineering, Srinivas Institute of Technology, 

Merlapadavu, Valachil, Mangalore -574 143, Karnataka, India 

-----------------------------------------------------------------------------***-----------------------------------------------------------------------

Abstract - The unit of Graphical processing is in every system 
consisting of Graphic card and is considered as integral part of 
computer. Compute unified device architecture is a language built 
by one of the leading graphic card company NVIDIA in order to 
carry on the parallel work on the GPU. CUDA has lot of applications 
in the field of Genetic algorithms, Machine learning algorithms, 
Numeric analysis etc. It is basically deals with improve in its 
efficiencies, standardize the operations, increase performance, 
improve the computation time taken by GPU. It provides a 
communication medium between the device and the host. And also 
helps in developing a platform where all the data are analyzed 
When the computation of the speed off factor is carried out, our aim 
is to show that the parallel code running on GPU has achieved more 
gain than the CPU code added more weight age by analyzing the 
computational values by plotting them in a graphical format. Thus it 
helps the end user to visually compare the values of parallel GPU 
and CPU performance and helps to achieve the better results. 
 
Key Words:  GPU, CUDA, genetic algorithms, Floyd and 
warshall, NVIDIA, parallization. 
 

1.  INTRODUCTION  
 
 In the modern era of computers everything has to be more 
graphical, so the processing unit of Graphics (GPU) mainly to 
improve the calculation including the graphical and non- graphical 
units in computers. Currently in our project we make used of 
NVIDIA GeForce graphic card. 

This GPU basically has more than 100 cores, they acts like the co-
processors to the CPU that helps while doing graphical 
computations. Generally CPU takes more computational time when 
compared it with GPU. So a question might rise in everyone’s mind 
like how GPU is doing faster computations than CPU?  

And the answer is simple, the CPU has maximum of 4 to 8 cores and 
GPU has more than 100 cores. This generally increases the speed of 
the computation [1]. In this paper, there is implementation of few 
genetic and numeric analysis algorithms and runs it parallel across 
the GPU. Then to calculate the Speed of factor of serialize and 
paralyze results. Genetic algorithms are used to find the solution for 
the problems related to optimization.  

For Example, take a string with no of elements in it, and 
after the process of testing or by simulation you will get a “n” best 
case result. In the next iteration what you will do is you breed those 
“n” values of best case, so that we get the optimized results. This 
function is called the fitness function. Then finally close the 
algorithm when satisfactory level of optimization is done. All these 
operations are running on Nvidia GPU and is written in Compute 
unified device architecture (CUDA). We study and analyze all these 
algorithms in order to gain best performance.  

GPU generally tasks up to successful execution of the problems 
related to graphical processing. Mainly graphics are based on how 
the person visualize, one of the need for the acceptability of 
graphics is because of its appearance.  
There is a concept called “graphics pipeline”.Vertex operations are 
the first stage in graphical pipeline. Triangles can be formed for the 
objects in all surfaces. Second stage basically converts the data 
which is the input into triangle (vertices). But there is a chance that 
100’s of 1000’s of vertices, now task every vertex has to be 
independently calculated, and a formidably high amount of number 
of units of processing is required so that it can be accelerate the 
processing of third stage. 

The second stage is rasterization, used to determine basically which 
pixels of screen are included by every number of available triangles.  
Further stage gives the operations that carry out the fragment 
option; the content is basically obtained in the context of textures 
or can say as images and deployed accurately on to a surface 
through fragment or can say as pixel processing. But we have a very 
huge quantity of pixels, and also in this stage there is a necessity of 
maximum amount of units for processing in order to increase the 
processing units of the fragments. In the last stage of the operations 
where each and every fragments are combined and stored into a 
composition way of buffering into the frame. There are certain 
things called function pipelines which constitutes of hardware 
which is configurable, but it doesn’t support programmable format. 
It’s operated with the Finite State Machines from the API 
(Application Programming Interface). Basically the API is only one 
of the standardized layer always allows applications especially the 
gaming applications to use software or hardware services and also 
it uses its functionality.  
 
API has become more popular from past two decades and each part 
of hardware and in the present trend of API which basically 
includes the improvements which are incremental and are mainly 
used for the images to display.  
 
Further the present trend of GPUs includes the main part of the 
hardware with all of the processors of vertex as well as processors 
of fragments and best thing it is programmable. The processors of 
vertex generally instructed to carry out the operations related to 
the vertex and the processors that are related to the fragments 
were normally instructed in order to carry out the operations that 
are linked to the fragments. The best part about these processors 
that they have instruction set for their own use. The coding related 
entity for this specified hardware was flexible enough and also 
when related to the “graphics pipelines” where it includes the 
acceleration part of the unit processing of the graphics was carried 
away further. When it comes to displaying of different image the 
graphic part is enabled. Although after doing all these efforts the 
experts in the field of graphics were not completely agree to the 
point because there is a fault in the hardware part which is not 
being able to utilize.  
 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

               Volume: 05 Issue: 06 | June 2018                    www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 6.171       |       ISO 9001:2008 Certified Journal       |        Page 871 
 

The other part has a very minimum number of the tasks related to 
programs, and each and every processors of vertex are not at all 
free when compared with increasing number of operations related 
to vertex, whereas plenty is left on the parallel side. But in certain 
tasks related to the programs, certain amounts of the processors of 
vertex is completely not part of the tasks and are except from task. 
Basically we are dealing with the small number of the operations, in 
which each and every part of processors of fragment is not at all 
free when compared with large amount of the operations related to 
fragments. The output is the overloaded of the hardware that 
involves the maximum operations, which seeks the alternate part is 
set to be completely discharged with minimum operations. 

Present generation of evolving GPUs basically has the part of the 
hardware that includes the USP (shared processor which is united), 
look alike processors are grouped and were utilized for all the 
operation related to vertex and also the part of the operations of 
fragment in order to improve usage of the part of the hardware. The 
very famous Xbox includes the initial part of the GPU along with 
USP part that constitute the hardware, after doing all this it still 
includes the alternate set of instructions for all the operations 
related to the vertex and the operations includes fragment.  
 
There is difficulty for the general purpose programming. The team 
has this little amount of freedom related with the programming 
language (CUDA in our case). From the last 10 year, the GPUs 
especially NVIDIA were growing as a giant when related to other 
graphic cart company. And also the best part of this graphic cart is 
that it has improved coming generations of GPUs, this definitely 
brought certain amount of improvements with respect to the 
hardware like the amount of cores, size of the data bus etc. 

It is a programming language that is at the top level and is proposed 
by NVIDIA in the year 2006. It is very much similar to “C“along with 
certain added extensions along with general added restrictions. It is 
referred as engine related to the part of computing part of GPU. 
This language is basically used for programming exclusively on 
NVIDIA related GPUs. The application is stated and Microsoft visual 
studio is the complier which is used that supports CUDA extensions. 
After writing the CUDA program it is compiled by Microsoft visual 
studio compiler which is running on operating system.  
 
The instruction set of compiler initialize the program with 
instruction set with PCI and the instruction is passed through RAM 
on GPUs. The GPUs parallelize the code and returns the instruction 
set. The Complier then runs the code and displayed the execution 
time taken by complier to compute the instruction set. 

2. RELATED WORK 
 
Parallelizing few Genetic and Numeric analysis Algorithms which is 
running on the GPUs and analyzing the performance of those 
algorithms on multiple-core using CUDA programming language. 
And finally calculating the speed of factor which is calculated by 
comparing parallel and serial computational time to execute. Then 
plotting the graph using RSTUDIO to clearly determine the 
comparison of serial and parallelized CUDA programs. The results 
will be help to analyze the performance of particular algorithm and 
also it indicates the need of the parallization for reducing the time 
and also for the betterment of results. 
 
While explaining the need of multi-core in paper [1], author 
explains that many of the upcoming brand new applications are 
based on the concept of multithreading. So basically the trend of 

computers has recently shifted more towards parallelism. Author 
mentions three problems that can be solved by introducing 
parallelism they are:  
 

 Problems regarding heat sync.  

 Problems regarding speed of light.  

 solves the problem in difficulty of verification and design.  
 
Authors basically explains the how difficult it was to make the 
single core clock frequency higher. Hence he proposed the 
parallelism in multi core.  
 
In another paper [2] author petr pospichal explains the concept of 
parallelizing the genetic algorithms using the programming 
language CUDA. It’s a process of Computing platform for 
parallization and API created by NVIDIA. The CUDA platform is 
developed in such a way to work with programming languages such 
as C++, C and FORTRAN. Currently in this project am using 
Microsoft visual studio 2013 which supports all these extensions. In 
this paper he explains how the flow of program works in CUDA. 
 

 
 

Fig 1: Processing flow on CUDA 
 

In article [3] author Maciej presents a way of 
implementation of genetic algorithm in CUDA. He basically 
used a sample algorithm that operates on a huge population 
and a very complex genotype, so that it overloads the size of 
the cache memory. Hence it is not completely moved to the 
graphics card. The presences of modules that execute on the 
CPU are synchronized through CPU. Considerations were 
based on weak, but always available graphics cards to test 
the capability of acceleration algorithms at very low cost. 
The literature survey clarifies about the variety of proposed 
articles and fellow research papers for the application of 
Compute Unified Device Architecture for parallelization 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

               Volume: 05 Issue: 06 | June 2018                    www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 6.171       |       ISO 9001:2008 Certified Journal       |        Page 872 
 

purpose. It also mentions few of the problems of the 
proposed models.  
 
Few of the problems of the proposed articles are using multi-
core as a part of improving quality of processors and how 
that can be achieved by using parallelism. The articles do 
mentioned about how to parallelize the genetic algorithms 
using CUDA on GPUs [5]. Our proposed platform overcomes 
all of these limitations and help in achieving better results of 
parallization when compared to other traditional method of 
parallelization. 
 

3. SYSTEM MODEL 
 

The design is mainly concerned with developing an 
important structure of a system. It involves observing the 
very important components of the system and also it 
identifies the communications between these components. 
The architecture that is suited for our proposed system. In 
the following sub-sections we insight into the various design 
aspects and the sub-systems involved in this architecture. 
 

 
 
Fig 2: Architecture of CUDA flow [4] 
 
According to the Compute Unified Device Architecture 
framework is used to execute our Genetic Algorithm on GPU. 
The CUDA toolkit version 7.5 achieved best speedups on GPU 
and among the wide community of developers. This toolkit 
can be run on any of the NVIDIA graphics card mainly from 

the Geforce [7] generation basically running on Windows and 
Linux. Parallelism is achieved on GPU which is expressed by 
directives of compile then it is added to the C programming 
language, the graphic NVIDIA GPUs[6] mainly contains of 
multiprocessors that is able to carry out work in parallel. 
Tasks running in this particular unit are compositely 
lightweight and can be constantly monitored using barriers 
so that consistency of data is managed which can be executed 
with very minimum impression regarding the multiprocessor 
and its performance, but not comparing the multiprocessors. 

This problem with multiprocessor will forces us to 
choose either completely independent or migrations of 
performance between these two asynchronously. The 
memory basically linked to graphics cards is constituted into 
two levels which is the main memory and the next one is chip 
memory. Main memory generally has a lot of capacity and it 
carries a complete dataset as well as programs of user 
related. It also provides an output point when communicating 
with CPU. But the problem is, high latency over weights the 
lot of capacity. One more problems are, chip memory is quick, 
but it is contained to limited size. Other than per-thread 
registers, the chip memory particularly contain the useful 
multiprocessor segments which is shared. This array which is 
of 16KB acts as a L1 cache which is user managed. The size of 
memory of chip is a main controlling factor for designing 
genetic algorithms efficiently, but existing applications of 
CUDA deals with much more benefit. 
 
4. COOPERATIVE REQUIREMENTS 
 
The main aim of the programming phase or the execution 
phase is to convert the basic design of the problem created 
during the design process into the code in a programming 
language[8][9][10] that is CUDA in our case, that is basically 
compiled and run by a computer and that performs the 
calculation of the specified CPU and GPUs by the design.  
Implementation of any program is always followed by 
correct decisions in the field of selection of domain used, the 
programming language used, etc. These important decisions 
are basically influenced by very crucial factors such as the 
working environment.  
 
There are 3 important decisions during the implementation. 
They are:  
 

 Choosing the operating system.  

 Choosing the hardware and software required for 
implementation.  

 Choosing the programming language on which the 
work is carried on.  

 
 
 
 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

               Volume: 05 Issue: 06 | June 2018                    www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 6.171       |       ISO 9001:2008 Certified Journal       |        Page 873 
 

4.1 Floyd and Warshall 
 
The main purpose of this algorithm is to find the shortest 
path of the weighed graph.  

 

Step 1: Declaring the CUDA functions for Floyd algorithm 

Step 2: Finding Shortest path on Parallel GPU and Serial 
CPU 

The above function calculates the CPU and GPU timings from 
the start time to end time taken to find the path which is 
shortest with respect to the weighted graph.  
 
Once the path is found the time is initialized and function 
copies all the information to the device and basically it runs 
on the Kernel of CUDA.  
 
The graph is generated based on the random weights which 
can be seen in the step 3 of Floyd-Warshall implementation 
on CUDA. 

Step3: Copy the memory and free the device 

In the above step the error sting is printed and copies back 
the memory from one unit to another. Once it is successfully 
copied the CUDA device memory is freed. The memory which 
is providing the error string is freed.  
 
Basically this step is to generate the random graph error free, 
if any memory location is having the error then it is detected 
and freed in this step. 

Step 4: Generating random graphs 

The graph generated has to be random because it helps the 
GPU timings better as the computer randomly generates the 
values and also it decreases the human effort for entering the 
values. 

Step 5: Generate result file  
The final step will be generating the result file set. If there is 
any error the print that the program is unable to find the 
shortest path for randomly generated distance.  
 
Else print the success statement of Floyd program along with 
the computational time it has taken to execute the input. And 
then determine the speed off factor when comparing it with 
the serial values. 

4.2 Monte Carlo pi value determination 
 
The Monte Carlo algorithm is a one which determines 
whether the value to be either true or false. Either it gives 
the result or it doesn’t give the expected output.  
 
In this case I have considered the calculation of the value of 
pi in both CPU and GPUs and also this program will help us 
to calculate the percentage of increase in computational 
timings of GPU with respect to CPU. 
 

Step 1: Defining Constants and checking CUDA error 
string 

The above pseudo code in fig 5.6 first initializes the constant 
threads and blocks required during the execution of 
program. Next step will be checking for CUDA errors for the 
threads created. If the error is found then debug those errors 
and get the string which is the reason for error.  
 
Step 2: Creating and allocating shared memory blocks  
 
The next step will be creating the shared memory blocks for 
the threads in order to hold all blocks of memory.  
 
There is a function called _syncthreads() which will wait till 
all the threads are catch up. Once the threads are at same 
point for each block the summing is done based on the 
previously created shared memory. 

Step 3: Reducing parallel to speed up the computation  
 
In order to increase the speed of execution of the program 
the thread is executed in parallel. Mainly here we make use 
of shared memory concept as described in previous step.  
 
The sum of the threads is reduced by running it in parallel 
and by sharing its memory. For each block of thread the 
parallization is done based on the dimension of particular 
block of thread. And thus we can able to increase the speed of 
execution of each thread running parallel. 

Step 4: Calculating the start and end time of execution 
  
In this step the beginning time and finished time of execution 
of program is calculated. And also check out the errors if any, 
then the data is copied from GPU to CPU.  
 
Finally print the execution statement and free the CUDA 
memory which is allocated in step 1 and then reset the device 
as it is in the beginning using cudaDeviceReset() function. 

 

4.3 Odd-Even Merge Sort 

This is one of the sorting methods also called as Batcher 
even-odd merge sort. It is genetic algorithm mainly used for 
parallelization purpose.  
 
Splitting the elements based on odd and even digits and 
finally merging and sorting the individual elements. 

Step 1: CUDA function for Odd sort 

The above function in fig 5.10 is the CUDA function for 
sorting the odd values from the given set of individuals. And 
assign the values of odd one to the created thread and store 
it in a temporary array variable.  
 
 
 
 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

               Volume: 05 Issue: 06 | June 2018                    www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 6.171       |       ISO 9001:2008 Certified Journal       |        Page 874 
 

Step 2: Generating the CUDA even function  
 
The function in fig 5.10 is the CUDA function in order to sort 
the even values from the randomly generated set of 
individuals. And add the values that are even to the thread id 
created and store it in array variable. 
 
Step 3: Allocate CUDA memory and compute time 
elapsed  
 
In the final part of this odd-even merge sort the memory is 
allocated to both odd as well as even function.  
 
Then Create the Start and stop event in order to calculate the 
time taken by the program to sort the values. When the 
sorting is done calculate the time and then free the allocated 
CUDA memory. 

5 Experimental Results 

Floyd-Warshall Result: 

 

 
Fig 3: Floyd and Warshall results 

From the above figure the CPU timings is 1692 ms and the 
optimized paralyzed GPU timings is 307ms.  
 
So the speed off factor is 1692 / 307 = 5.5  
Therefore the parallization of GPU on Floyd-Warshall 
algorithm has shown more than 5 times increase in the result 
when compared it with the CPU timings. 

 

Fig 4: Floyd and Warshall Graphical Analysis 
 

Monte Carlo Result: 
 

 

 
Fig 5: Monte Carlo results 

From the above figure the CPU timings is 3100 ms and the 
optimized paralyzed GPU timings is 1512 ms.  
 
So the speed off factor is 3100 / 1512 = 2.1  
Therefore the comparison of GPU on Monte Carlo algorithm 
to calculate the pi value has shown more than 2 times 
increases in the result when compared it with the CPU 
timings. 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

               Volume: 05 Issue: 06 | June 2018                    www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 6.171       |       ISO 9001:2008 Certified Journal       |        Page 875 
 

 

Fig 6: Monte Carlo Graphical Analysis 

 

Odd-Even Merge Sort: 

 

 
Fig 7 : Odd-Even Merge Sort 

From the above figure  the CPU timings is 4.2 ms and the 
optimized paralyzed GPU timings is 2.6 ms.  
 
So the speed off factor is 4.2 / 2.6 = 1.6  
Therefore on observing the value of GPU on algorithm to 
calculate the odd-even sort value has shown more than 1.6 
times increases in the result when compared it with the CPU 
timings. 

 

 

Fig 8: Odd-Even Merge sort graphical Analysis 

 
5. CONCLUSIONS 
 
The very important contribution done is to make an easily 
accessible algorithm which is running parallel and develop 
the design for architecture of graphical processing units  
 
When the calculation of the speed off factor is performed, 
The results shows that the parallel code running on GPU has 
achieved at least minimum of more than 1.5 times more gain 
than the CPU code. Thus it helps the end user to visually 
compare the values of parallel GPU and CPU performance 
and helps to achieve the better results.  
 
Finally with this work we have proved that the Parallel GPU 
can achieve higher degree of optimality when compared to 
CPU code. 
 
REFERENCES 
 

1. Tutorial by D Kirk, Computing the speed of 
Computation in NVIDIA graphic card. 

 
2. “A Parallel development of algorithm on GPU” by 

Steven and ovideau, Dept of CSE 2014. 
 

3. “Parallel genetic algorithm on CUDA architecture” 
by Peter poshpical Springer-2010.  

 
4. Parallel experience of computing with CUDA, 

Michael and Grand John, IEEE-2008  
 

5. “Implementation of genetic algorithms on CUDA” by 
Maciej, Springer-2014 

 
6. CUDA application design and Development by 

NVIDIA 2011 edition. 
 

7. Parallel programming with CUDA by Ian Buck.  



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

               Volume: 05 Issue: 06 | June 2018                    www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2018, IRJET       |       Impact Factor value: 6.171       |       ISO 9001:2008 Certified Journal       |        Page 876 
 

8.  https://en.wikipedia.org/CUDA  
 

9.  https://en.wikipedia.org/Parallel_computing  
 

10.  http://docs.nvidia.com/cuda/cuda-c-
programming-guide/ 

 

 

https://en.wikipedia.org/CUDA
https://en.wikipedia.org/Parallel_computing
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

