# Cost Benefit Analysis of a Roof Top Solar PV System at a Domestic Apartment in Kolkata

## Pallav Dutta<sup>1</sup>, Ushnik Chakrabarti<sup>2</sup>

<sup>1</sup>Assistant Professor, Dept. of Electrical Engineering, Narula Institute of Technology, West Bengal, India <sup>2</sup> Assistant Professor, Dept. of Electrical Engineering, Narula Institute of Technology, West Bengal, India \*\*\*

**Abstract** - Using of roof top PV system can be rapidly deployed on various apartments with a large roof top area in the city. The paper shows an investigation on variation of energy consumption from distributors of a domestic consumer while using solar power or maintains conventional system. The paper also explores the coast benefit analysis of an implementing PV system in an apartment. The impacts of various economic parameters are also taken into consideration.

*Key Words*: Rooftop PV cell, Block tariff, irradiation factor, insulation factor, Cost analysis, AMI.

### 1. INTRODUCTION

There is a necessity to hasten the development of clean energy technologies in order to address the global challenges of energy security and sustainable development. Solar PV cell technology is the easiest option to reduce the excessive usage of non-renewable energy sources. As India is located in the equatorial sunbed of the earth, the territory receives plenty radiant energy from the sun. Most part of India is experiencing over 250-300 days a year of clear sunny weather, where the annual global radiation varies from 1600-2200 kWh/m<sup>2</sup> having equivalent energy potential about 6000 million GWh energy per year, which is quite higher than the countries total annual energy consumption<sup>[1]</sup>. The paper describes a cost analysis between a domestic (urban) consumer category of rate G in normal tariff scheme and running with a PV rooftop panel at a domestic apartment in Kolkata.

# 2. ENERGY CONSUMPTION ANALYSIS OF THE APARTMENT

Kolkata is a developing metropolitan with population of about 45 lakh, which is increasing rapidly and so the energy consumption. Accommodation is a huge problem the city is facing right now and as some result apartments are in trend these days. In order to provide electricity throughout the city the generation and distribution companies meet huge challenges over the years. Now a days the thermal power generation sectors are experiencing several challenges like excessive hike of fossil fuel cost and the maintenance cost during transmission and distribution encourages several consumers to shift from conventional energy systems to non-conventional renewable energy systems like rooftop PV solar cell generation<sup>[2-3]</sup>. Here the detailed monthly and annual energy consumption of an apartment in Kolkata consisting 14 households. The detail of the gross payable amount to the

electricity company is also taken into account. In this calculation the cost due to load power factor, fixed monthly charges and meter charges are not taken into consideration. Only the monthly unit (kWh) consumption of each household is considered and the current tariff rate consumer category of rate G in normal tariff scheme of CESE ltd. Thus, in this paper we have taken the energy consumption of a whole apartment into consideration for a year long.

**Table -1:** The energy consumption and considerable amount of charges monthly and annually.

| Month                    | LOAD<br>1 | LOAD<br>1 | 10AD<br>3 | LOAD<br>4 | LOAD<br>5 | LOAD<br>¢ | LOAD  | LOAD<br>§ | LOAD<br>9 | LOAD<br>10 | 104D<br>11 | 1040<br>11 | 1040<br>13 | 1040<br>14 |
|--------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-------|-----------|-----------|------------|------------|------------|------------|------------|
|                          | UNI       | INI       | WI        | INI       | INI       | UNII      | INI   | UNI       | UNII      | UNI        | UNIT       | UNIT       | UNIT       | UNI        |
| Merch                    | ¥         | 31        | 11        | s         | 116       | Ш         | 203   | 192       | 55        | я          | 0          | 167        | 35         | 15         |
| April                    | 119       | 15        | 9         | 131       | 372       | 334       | 264   | 230       | 187       | 13         | 80         | 20         | 69         | 4ť         |
| May                      | 143       | 9         | 4         | 16        | 40        | 209       | 248   | 212       | 239       | 12         | 9)         | 19         | 45         | 45         |
| June                     | 12        | Æ         | 86        | 118       | 319       | 102       | 362   | 238       | 219       | 4          | ľ          | 13         | 46         | £          |
| July                     | 113       | 6         | 116       | N         | 230       | M         | 10    | Q         | 201       | 51         | 7          | 165        | 41         | Ш          |
| August                   | 127       | 64        | 10        | 64        | 339       | 19        | 20    | 26        | 21        | 2          | .9         | 152        | 507        | 45         |
| September                | 113       | 5         | 119       | 12        | 颁         | 102       | 246   | 261       | 89        | ß          | 17         | 11         | 516        | .84        |
| October                  | 127       | Ň         | 121       | 6         | 364       | 1M        | 291   | 25        | 53        | 25         | 40         | 13         | 35         | 193        |
| Notember                 | 56        | 1         | 5         | ā.        | 115       | 9         | 19    | 177       | 10        | 25         | y          | Ň          | .55        | 229        |
| December                 | 52        | £         | 4         | 1         | 6         | 60        | 150   | 157       | 0         | 23         | 17         | 0          | 307        | 219        |
| January                  | 1         | 1         | 4         | ā.        | 90        | ä         | 14    | 16        | И         | 1          | 13         | 87         | 313        | 109        |
| February                 | 0         | 11        | 3         | 49        | ï         | ť         | 臣     | 19        | -         | ŀ          | 20         | 1          | 36         | 20         |
| Annal<br>consumption     | 1152      | 538       | 98        | 576       | 2733      | 1871      | 1602  | 1509      | 1463      | 606        | 601        | 11%        | 1966       | 3874       |
| Argenergy<br>consumption | Ж         | 410       | 71.83     | 3         | 20.75     | 155.91    | 21610 | 209.08    | 121.91    | 4.83       | 9          | 122.83     | 413.83     | 331.16     |



Table – 2: Monthly energy consumption and Monthly grosspayable amount.

| Month     | Monthly Energy<br>Consumption | Monthly Gross<br>Payable<br>Ammount |  |  |  |  |
|-----------|-------------------------------|-------------------------------------|--|--|--|--|
|           | UNIT                          | Rs.                                 |  |  |  |  |
| March     | 1883                          | 11934.21                            |  |  |  |  |
| April     | 3005                          | 20451.36                            |  |  |  |  |
| Мау       | 3039                          | 20750.89                            |  |  |  |  |
| June      | 2895                          | 19517.12                            |  |  |  |  |
| July      | 2702                          | 18090.31                            |  |  |  |  |
| August    | 2874                          | 19508.27                            |  |  |  |  |
| September | 2430                          | 16112.83                            |  |  |  |  |
| October   | 2112                          | 13436.37                            |  |  |  |  |
| November  | 1462                          | 9860.19                             |  |  |  |  |
| December  | 1266                          | 7720.81                             |  |  |  |  |
| January   | 1233                          | 7476.66                             |  |  |  |  |
| February  | 1275                          | 7687.83                             |  |  |  |  |
| Annual    | 26182                         | 172546.85                           |  |  |  |  |
| Avarage   | 2181.79                       | 14378.9                             |  |  |  |  |

### **3.ROOF TOP SOLAR PANEL PERFORMANCE**

Now the 14 house hold of the apartment decided to install the roof top solar panel around the 120 square foot of unshaded area of the roof. is as follows.

| <b>Table – 3:</b> The performance of solar panel at standard |
|--------------------------------------------------------------|
| condition                                                    |

| PERFORMENCES AT STANDERED TEST CONDITION* |                  |         |              |  |  |  |  |  |  |
|-------------------------------------------|------------------|---------|--------------|--|--|--|--|--|--|
| Nominal Power                             | $P_{MPP}$        | [W]     | 250          |  |  |  |  |  |  |
| Short Circuit Current                     | I <sub>SC</sub>  | [A]     | 8.62         |  |  |  |  |  |  |
| Open Circuit Voltage                      | Voc              | [V]     | 37.32        |  |  |  |  |  |  |
| Current At Minimum Power                  | Impp             | [A]     | 8.13         |  |  |  |  |  |  |
| Voltage At Maximum Power                  | V <sub>MPP</sub> | [V]     | 30.76        |  |  |  |  |  |  |
| Maximum System voltage                    | Vsys             | [V]     | 100 (IEC)    |  |  |  |  |  |  |
|                                           |                  |         | 600(CSA/UL)  |  |  |  |  |  |  |
| Weight                                    | М                | [Kg/lb] | 19.0 / 41.89 |  |  |  |  |  |  |

\*AM 1.5 Spectrum Data are given (nominal) values.

To calculate the annual solar energy output of a photovoltaic system the global formula to estimate the electricity generated in output of a photovoltaic system is <sup>[4-6]</sup>:

$$E = A * r * H * PR$$

E = Energy (kWh)

A = Total solar panel Area (m2)

r = solar panel yield or efficiency (%) given by the ratio: electrical power (in kWp) of one solar panel divided by the area of one panel.

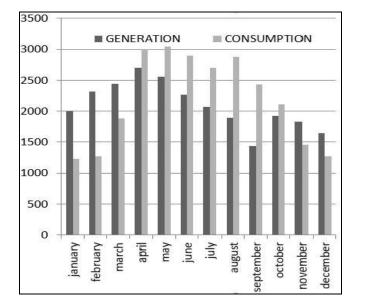
H = Annual average solar radiation on tilted panels (shadings not included)

PR = Performance ratio, coefficient for losses (range between 0.5 and 0.9, default value = 0.75).

It is a very important value to evaluate the quality of a photovoltaic installation because it gives the performance of the installation independently of the orientation, inclination of the panel. It includes all losses.

Example of detailed losses that gives the PR value (depends on the site, the technology, and sizing of the system):-

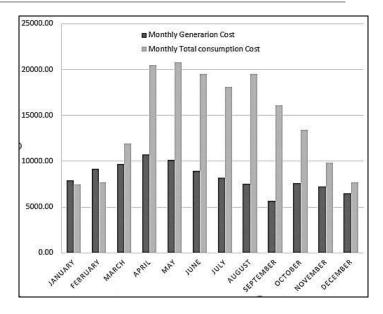
- -Inverter losses (4% to 10%)
- Temperature losses (5% to 20%)
- DC cables losses (1 to 3 %)
- AC cables losses (1 to 3 %)
- Shadings 0 % to 80% (specific to each site)
- Losses at weak radiation 3% to 7%
- Losses due to dust, snow... (2%)
- Other Losses


|           |               | (6-6)                  | ation                                  | ses<br>es                               |                 | Ses                | 5               | 5               |          | 8 g                                    | t &                        |        | Ses                | b                            | tion                | 7                           | ion                        | st                                |                |
|-----------|---------------|------------------------|----------------------------------------|-----------------------------------------|-----------------|--------------------|-----------------|-----------------|----------|----------------------------------------|----------------------------|--------|--------------------|------------------------------|---------------------|-----------------------------|----------------------------|-----------------------------------|----------------|
| Month     | Area (Sq. m.) | Solar Panel Yields (%) | Annual Avg Irradiation<br>(kWh/M2/Day) | Performance Losses<br>&Co-eff of Losses | Inverter Losses | Temperature Losses | DC Cable Losses | AC Cable Losses | Shadings | Avg. Losses Due to<br>Weak Irradiation | Losses Due to Dirt<br>Snow | Energy | Energy With Losses | Monthly Energy<br>Generation | Monthly Consumption | (Consumption<br>generation) | Monthly Generation<br>Cost | Monthly Total<br>Consumption Cost | Monthly Profit |
| January   | 120           | 0.15                   | 4.26                                   | 0.75                                    | 0.06            | 0.10               | 0.01            | 0.01            | 0.02     | 0.03                                   | 0.02                       | 57.51  | 43.16              | 1294.84                      | 1233.00             | -61.84                      | 7911.46                    | 7476.66                           | -434.80        |
| February  | 120           | 0.15                   | 4.93                                   | 0.75                                    | 0.07            | 0.09               | 0.01            | 0.01            | 0.02     | 0.03                                   | 0.01                       | 66.56  | 50.14              | 1504.28                      | 1275.00             | -229.28                     | 9191.13                    | 7687.83                           | -1503.30       |
| March     | 120           | 0.15                   | 5.66                                   | 0.75                                    | 0.07            | 0.08               | 0.01            | 0.01            | 0.02     | 0.03                                   | 0.09                       | 76.41  | 52.74              | 1582.15                      | 1883.00             | 300.85                      | 9666.91                    | 11934.21                          | 2267.30        |
| April     | 120           | 0.15                   | 6.11                                   | 0.75                                    | 0.08            | 0.05               | 0.01            | 0.01            | 0.02     | 0.03                                   | 0.09                       | 82.49  | 58.42              | 1752.48                      | 3005.00             | 1252.52                     | 10707.63                   | 20451.36                          | 9743.73        |
| May       | 120           | 0.15                   | 5.82                                   | 0.75                                    | 0.08            | 0.05               | 0.01            | 0.01            | 0.02     | 0.03                                   | 0.09                       | 78.57  | 55.16              | 1654.68                      | 3039.00             | 1384.32                     | 10110.12                   | 20750.89                          | 10640.77       |
| June      | 120           | 0.15                   | 4.51                                   | 0.75                                    | 0.09            | 0.02               | 0.01            | 0.02            | 0.02     | 0.03                                   | 0.01                       | 60.89  | 48.89              | 1466.72                      | 2895.00             | 1428.28                     | 8961.66                    | 19517.12                          | 10555.40       |
| July      | 120           | 0.15                   | 4.11                                   | 0.75                                    | 0.09            | 0.02               | 0.01            | 0.01            | 0.02     | 0.03                                   | 0.01                       | 55.49  | 44.70              | 1340.96                      | 2702.00             | 1361.04                     | 8193.27                    | 18090.31                          | 9897.04        |
| August    | 120           | 0.15                   | 3.99                                   | 0.75                                    | 0.10            | 0.05               | 0.02            | 0.02            | 0.02     | 0.03                                   | 0.01                       | 53.87  | 40.98              | 1229.25                      | 2874.00             | 1644.75                     | 7510.74                    | 19508.27                          | 11997.53       |
| September | 120           | 0.15                   | 3.94                                   | 0.75                                    | 0.10            | 0.06               | 0.02            | 0.02            | 0.18     | 0.03                                   | 0.01                       | 53.19  | 30.99              | 929.65                       | 2430.00             | 1500.35                     | 5680.19                    | 16112.83                          | 10432.64       |
| October   | 120           | 0.15                   | 4.24                                   | 0.75                                    | 0.11            | 0.07               | 0.02            | 0.02            | 0.02     | 0.03                                   | 0.01                       | 57.24  | 41.56              | 1246.86                      | 2112.00             | 865.14                      | 7618.31                    | 13436.37                          | 5818.06        |
| November  | 120           | 0.15                   | 4.36                                   | 0.75                                    | 0.11            | 0.11               | 0.02            | 0.02            | 0.02     | 0.03                                   | 0.02                       | 58.86  | 39.52              | 1185.56                      | 1462.00             | 276.44                      | 7243.76                    | 9860.19                           | 2616.43        |
| December  | 120           | 0.15                   | 4.13                                   | 0.75                                    | 0.12            | 0.12               | 0.02            | 0.02            | 0.04     | 0.03                                   | 0.02                       | 55.76  | 35.52              | 1065.48                      | 1266.00             | 200.52                      | 6510.07                    | 7720.81                           | 1210.74        |



International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 05 Issue: 06 | June -2018


www.irjet.net



**Chart -1**: Comparison chart between monthly generation and consumption

| <b>Table – 5:</b> Different                   | cost analysis |
|-----------------------------------------------|---------------|
| Annual Total Generation<br>Cost (Rs.)         | 99305.24      |
| Annual Avg Generation Cost<br>(Rs.)           | 8275.44       |
| Annual Total Consumption<br>Cost (Rs.)        | 172546.85     |
| Annual Avg Consumption<br>Cost                | 14378.90      |
| Annual Total Profit (Rs.)                     | 73241.61      |
| Monthly Profit                                | 6103.47       |
| Annual Cost Before Using<br>Solar Cell (Rs.)  | 172546.85     |
| Monthly Cost Before Using<br>Solar Cell (Rs.) | 14378.90      |

Table - 5: Different cost analysis



p-ISSN: 2395-0072

**Chart -2:** Comparison chart between monthly generation cost and monthly total consumption cost

### 3. CONCLUSION

Here we can conclude that instead of using conventional method of power generation to justify the annual load demand, the hybrid system is much more relevant from both the suppliers and consumers side. It not only reduces the generation cost but also very helpful to manage several challenges of the recent power market. Here we can clearly see the difference between the monthly energy consumption of a domestic consumers between using conventional system and hybrid system. Such an arrangement is economical for the both the suppliers and consumers perspective. In future this arrangement can be applicable for official and industrial consumers also.

#### REFERENCES

- [1] Performance Of Solar Power Plants In India, Central Electricity Regulatory Commission, New Delhi, February 2011.
- [2] K. S. Reddy, T. K. Mallick and D. Chemisan; "Solar Power Generation"; Hindawi Publishing Corporation, International Journal of Photoenergy, Volume 2013, Article ID 950564.
- [3] Christoph Maurer, Christoph Cappel and Tilmann E.Kuhn, "Progress In Building-Integrated Solar Thermal Systems"; ELSEVIER, Solar Energy, Volume 154, 15 September 2017, Pages 158-186
- [4] Jai Singh Arya, Aadesh Kumar Arya and Sanjeev Aggarwal, "Recent Trends in Solar Energy Generation", ACEEE, proc. of Int. Conf. on Emerging

www.irjet.net

Trends in Engineering and Technology. DOI: 03. AETS.2013.3.303

Volume: 05 Issue: 06 | June -2018

IRIET

- Kraemer, D; Hu, L; Muto, A; Chen, X; Chen, G; Chiesa, M (2008), "Photovoltaic-thermoelectric hybrid systems: A general optimization methodology", Applied Physics Letters, 92 (24): 243503, doi:10.1063/1.2947591
- [6] PragyaNema, R.K.Nema and Saroj Rangnekar, "A Current And Future State Of Art Development Of Hybrid Energy System Using Wind And PV-Solar: A Review", ELSEVIER, Renewable and Sustainable Energy Reviews, Volume 13, Issue 8, October 2009, Pages2096-2103,

Https://Doi.Org/10.1016/J.Rser.2008.10.006.