

Analysis of RC Structure With and Without Shear Wall and Optimum Location of Shear Wall

Wadmare Aniket¹, Konapure Nijagunappa², Lodha Pranav³, Sarda Kanhaiyya⁴, Patil Krishnakant⁵, B.M. Malagimani⁶

^{1,2,3,4,5}Under-Graduate Student, Dept. of Civil Engineering, College Of Engineering Ambajogai, Maharashtra, India ⁶ Professor, Dept. of Civil Engineering, College Of Engineering Ambajogai, Maharashtra, India ***

Abstract - As we know that in the present scenario buildings with shear walls are gaining more popularity than buildings without shear wall in earthquake prone areas due to its capability to the resistance during earthquake. In this paper 11 story RCC building is considered for the seismic analysis which is located in zone V is considered for the analysis. Three models are considered for the analysis out of which one is bare frame model and remaining two models are structures with shear wall at various positions is considered. The modelling and analysis is done using ETABS -2013 software package. An attempt is made to study and compare the parameters such as story displacement, story drift, story shear, natural period and base shear

Key Words: Shear Wall, ETABS, Base Shear, storey drift, natural period and storey displacement

1. INTRODUCTION

The major criteria now-a-days in designing RCC structures in seismic zones is control of lateral displacement resulting from lateral forces. In this thesis effort has been made to investigate the effect of Shear Wall position on lateral displacement and Storey Drift in RCC Frames. Three types of G + 10 structures are considered, out of which one is bare frame model i.e. without shear wall and for remaining two models shear wall is considered at centre and at corners . All the 3 models are analyzed. And after the analysis, obtained results are compared with respect to storey displacement, storey shear, base shear, and natural period for all the three models and then by comparing the results optimum location of shear wall is determined.

1.1 Objectives

1. To analyze the multi-storey building with shear wall using ETABS Software.

2. To study behavior of the structure under different location of shear wall.

3. To study and compare the parameters such as Natural Period, storey shear, storey displacement and storey drift.

4. To determine the optimum location of the structure.

1.2 Methodology

- Modelling and analysis of multi-storeyed building without and with shear wall at centre and corners for seismic loads.
- Comparison of results and graph of all models for the parameters storey displacement, storey drift, Storey stiffness, base shear and natural period.
- Seismic zone considered in this project is Zone V.
- Optimum location of shear wall is found out.

2. MODELING AND ANALYSIS

For this study, an 11-story building with each story height as 3 meters is considered and modelled using ETABS. The buildings are assumed to be fixed at the base. Three different models were considered, out of which one is bare frame model and other two models consist shear wall at center and corners. Models are studied in zone V comparing lateral displacement, story drift, story stiffness, base shear and natural period for all models.

2.1 MODELING

In the present study, four different types infill materials viz, conventional brick, cement concrete block, hollow block and light weight brick is taken into consideration. The building models with different types infill materials is modeled and analyzed using the computer software ETABS-2009 and the results are compared.

Plan Size	25m X 25m
No. Of Storeys	11 No
Storey Height	3m
Thickness Of Slab	0.12m
Wall Thickness	0.23m
Column Size	0.6m X 0.6m
Beam Size	0.23m X 0.45m
Grade Of Steel	Fe 415
Grade Of Concrete for	M 25

Table -2.1: Analysis Data

Beam	
Grade Of Concrete for Column	М 30
Floor Finish	1kN/m ²
Live Load on Floor	3kN/m ²
Live Load on Roof	1kN/m ²
Response Reduction Factor	5
Importance Factor	1
Soil Condition	Medium
Туре	II
Zone	V
Zone Factor	0.36

Fig2.2 Plan of Structure with Shear Wall at Middle (Model 2)

Fig-2.3 Plan of Structure with Shear Wall at all four Corners (Model 3)

Fig-2.4 3D View of Structure without Shear Wall (Model1)

Fig-2.5 3D View of Structure with Shear Wall (Model2)

Fig-2.6 3D View of Structure with Shear Wall (Model3)

3. RESULTS AND DISCUSSION

Results from the analysis are base Shear, storey displacement, story drift, Natural period and story shear which is obtained for all models along both lateral direction i.e. along X and Y direction. Results are obtained and graphs are developed for multistoried building of bare frame model for models at various position of shear wall.

3.1BASE SHEAR FOR THREE MODELS

Table-3.1 Base Shear (kN)

Model	Base Shear
Model 1	1241.01
Model 2	3020.701
Model 3	4586.57

Table-3.1 shows base shear for all the three models i.e. structure without shear wall, structure with shear wall at centre and structure with shear wall at corners. Fig-3.1 shows the variation of base shear. From the above table we can say that the base shear is more for structure with shear wall at corners as compared to that for structure with no shear wall. From the above table we can say that the structure with shear wall at corners gives higher value since its mass and stiffness are more. And the structure without shear wall gives lower value since its mass and stiffness are less.

3.2 NATURAL PERIOD FOR THREE MODELS

Table-3.2Natural Period (S)

Model	Period
Model 1	3.217
Model 2	2.708
Model 3	0.987

Fig-3.2 Comparison of Natural Period

Table-3.2 shows the natural period value for three models i.e. structure without shear wall, structure with shear wall at centre and structure with shear wall at corners. From the above results the natural period for the structure with shear wall at corners is less than that compared to the other two structures. From the above results we can conclude that, structure with shear wall at corners is stiffer than that compared to the structure with no shear walls.

3.3 STOREY DISPLACEMENT FOR THREE MODELS

Table-3.3 Storey Displacement (mm)

Storey No	Model 1	Model 2	Model 3
Storey11	71.9	36.9	28.1
Storey10	68.6	32.8	25
Storey9	64.3	28.6	21.7
Storey8	58.7	24.3	18.4
Storey 7	51.8	20	15.1
Storey6	43.9	15.8	11.9
Storey5	35.3	11.9	8.9
Storey4	26.3	8.3	6.2
Storey3	17.4	5.1	3.9
Storey2	9.2	2.6	2
Storey1	2.8	0.9	0.7
Base	0	0	0

Fig-3.3 Comparison of Storey Displacement

Table-3.3 shows the displacement values of the three models i.e. structure without shear wall, structure with shear wall at centre, structure with shear wall at corners. And fig-3.3 gives the comparison plot between structures without shear wall, structure with shear wall at centre, structure with shear wall at corners. Here the structure without shear wall gives higher values as compared to the other two structures.

3.4 STOREY DRIFT FOR THREE MODELS Table-3.4 Storey Drift (m)

Storey No	Model 1	Model 2	Model 3
Storey11	0.001073	0.001381	0.001067
Storey10	0.001446	0.001424	0.001099
Storey9	0.001882	0.001439	0.001104
Storey8	0.002291	0.001429	0.001092
Storey7	0.002627	0.001391	0.001058
Storey6	0.002867	0.001317	0.000997
Storey5	0.002992	0.001202	0.000908
Storey4	0.002968	0.001044	0.000788
Storey3	0.00273	0.000845	0.000638
Storey2	0.002145	0.000611	0.000462
Storey1	0.000939	0.000284	0.000222
Base	0	0	0

Fig-3.4 Comparison of Storey Drift

Table-3.4 shows the Storey Drift values of the three models i.e. structure without shear wall, structure with shear wall at centre, structure with shear wall at corners. And Fig-3.4 gives the comparison plot between structures without shear wall, structure with shear wall at centre, structure with shear wall at corners. Here the structure with shear wall at corners gives higher values as compared to the other two structures.

3.5 STOREY SHEAR FOR THREE MODELS

Table-3.5 Storey Shear (kN)

Storey No.	Model 1	Model 2	Model 3
Storey 11	178.8791	430.9792	772.4396
Storey 10	455.3334	1104.997	1764.019
Storey 9	679.2614	1650.951	2567.198
Storey 8	856.1922	2082.323	3201.809
Storey 7	991.6548	2412.591	3687.683
Storey 6	1091.178	2655.238	4044.651
Storey 5	1160.292	2823.742	4292.546
Storey 4	1204.525	2931.585	4451.199
Storey 3	1229.406	2992.247	4540.441
Storey 2	1240.464	3019.207	4580.104
Storey 1	1241.01	3020.701	4586.57
Base	0	0	0

Fig-3.5 Comparison of storey shear

Table -3.5 shows the storey shear values of the three models i.e. structure without shear wall, structure with shear wall at centre, structure with shear wall at corners. And fig-3.5 gives the comparison plot between structures without shear wall, structure with shear wall at centre, structure with shear wall at corners. Here the structure with shear wall at corner gives higher values as compared to the other two structures, this is because structure with shear wall at corner have more shear resistance than that for the structure without shear wall.

4. CONCLUSIONS

The present study of analysis makes an effort to understand the effect of shear wall on the structure situated in the zone susceptible to earthquake. The analysis is been carried out, using ETABS. The results of the study lead to the following conclussions.

1. Base shear for structure with shear wall at corners is greater than the other two structures. Hence it is feasible to provide to shear wall at corners than at centre.

2. Natural period for structure with shear wall at corners is less i.e the structure displaces less in case of shear wall at corners than at centre. Hence it is feasible to provide shear wall at corners.

3. Storey displacement for structure with shear wall at corners is less as compared to that of structure with shear wall at centre and structure without shear wall. Hence it is feasible to priovid e shear wall at corners.

4. storey shear for structure with shear wall at corners gives higher values as compared to that with centre. Hence it is feasible to provide shear wall at corners.

5. From the above conclusions it is observed that structure with shear wall at corners gives better results as in case of the other two structures.

5. REFERENCES

1 Ravi Kumar K. Sundar Kumar "Analysis and Design of Shear Wall for an Earthquake Resistant Building using ETABS"International Journal for Innovative Research in Science & Technology, Volume 4, Issue 5, October 2017.

2 A.B. Karnale and Dr. D. N. Shinde, Comparative Seismic Analysis of High Rise and Low Rise RCC Building with Shear Wall, International Journal of Innovative Research in Science, Engineering and Technology, September 2015.

3 Mr.k.l. lovaraju and dr. K.v.g.d. balaji, " Effective location of shear wall on Performance of building frame Subjected to earthquake load"International advanced research journal in science, engineering and technology vol.2, issue 1, january 2015

4 Chowdary, P.V.S. and Pandian, S.M. (2014), "A Comparative Study on RCC Structure with and without Shear Wall", International Journal for Scientific Research & Development, IJSRD, Vol. 2, No.2.

5 Varsha. R. Harne "Comparative study of strength of RC Shear wall at different location on multistoried Residential building", International Journal of civil Engineering Research. ISSN 2278-3652 Volume5, Number 4(2014) pp 391-400

6 P.P Chandurkar, DR. P.S. Pajgade, "Seismic analysis of RCC building with and without shear wall" IJMER, Vol.3, Issue 3, may- june 2013,pp- 1805 -1810,2013.

7 Himalee Rahangdale, et al, "Design and Analysis of Multi storied Building with Effect of Shear Wall", Vol. 3, Issue 3, May-Jun 2013, pp.223- 232. 2.