
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 06 | June-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1675

Parallel Computing with CUDA

Kunal Someskar

Student, VES Institute of Technology, Mumbai, Maharashtra, India
---***---

Abstract - With the change from singlecore to multicore
processors basically entire, for all intents and purposes all
item CPUs are currently parallel processors. Expanding
parallelism, as opposed to expanding clock rate, has turned
into the essential motor of processor execution development,
and this pattern is probably going to proceed. This brings up
numerous critical issues about how to beneficially create
productive parallel projects that will scale well crosswise over
progressively parallel processors.

Key Words: CPU, GPU, Parallel Computing, Parallel
Processors, CUDA, Nvidia.

1. INTRODUCTION

CUDA is a parallel figuring stage and application
programming interface (API) display made by Nvidia. It
permits programming designers and programming
architects to utilize a CUDA-empowered illustrations
handling unit (GPU) for broadly useful preparing – an
approach named GPGPU (General-Purpose registering on
Graphics Processing Units). The CUDA stage is a product
layer that gives guide access to the GPU's virtual direction
set and parallel computational components, for the
execution of register portions.

The CUDA stage is intended to work with programming
dialects, for example, C, C++, and Fortran. This openness
makes it less demanding for authorities in parallel
programming to utilize GPU assets, as opposed to earlier
APIs like Direct3D and OpenGL, which required propelled
aptitudes in designs programming. Likewise, CUDA bolsters
programming structures, for example, OpenACC and OpenCL.
When it was first presented by Nvidia, the name CUDA was
an acronym for Compute Unified Device Architecture, yet
Nvidia in this way dropped the utilization of the acronym.

1.1 Advantages

CUDA has a few focal points over conventional universally
useful calculation on GPUs (GPGPU) utilizing designs APIs:

 Scattered reads – code can read from arbitrary
addresses in memory

 Unified virtual memory (CUDA 4.0 and above)

 Unified memory (CUDA 6.0 and above)

 Shared memory – CUDA exposes a fast shared
memory region that can be shared among threads.
This can be used as a user-managed cache, enabling

higher bandwidth than is possible using texture
lookups.

 Faster downloads and read backs to and from the
GPU

 Full support for integer and bitwise operations,
including integer texture lookups

1.2 Disadvantages

 Regardless of whether for the host PC or the GPU gadget, all
CUDA source code is currently handled by C++ structure
rules. This was not generally the case. Prior adaptations of
CUDA depended on C sentence syntax rules. As with the
broader instance of incorporating C code with a C++
compiler, it is in this manner conceivable that old C-style
CUDA source code will either neglect to order or won't carry
on as initially planned.

 Interoperability with rendering dialects, for
example, OpenGL is one-path, with OpenGL
approaching enrolled CUDA memory however
CUDA not approaching OpenGL memory.

 Replicating amongst host and gadget memory may
acquire an execution hit because of framework
transport transmission capacity and idleness (this
can be halfway mitigated with non-concurring
memory exchanges, took care of by the GPU's DMA
motor)

 Strings ought to keep running in gatherings of no
less than 32 for best execution, with add up to
number of strings numbering in the thousands.
Branches in the program code don't influence
execution altogether, gave that every one of 32
strings takes a similar execution way; the SIMD
execution display turns into a critical restriction for
any inalienably unique assignment (e.g. navigating a
space apportioning information structure amid
beam following).

 Dissimilar to OpenCL, CUDA-empowered GPUs are
just accessible from Nvidia.

 No emulator or fallback usefulness is accessible for
present day amendments.

 Substantial C++ may here and there be hailed and
counteract aggregation because of the way the
compiler approaches improvement for target GPU
gadget limitations.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 06 | June -2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1676

 C++ run-time compose data (RTTI) and C++-style
special case taking care of are just upheld in have
code, not in gadget code.

 In single accuracy on original CUDA process ability
1.x gadgets, denormal numbers are unsupported
and are rather flushed to zero, and the precisions of
the division and square root activities are
somewhat lower than IEEE 754-agreeable single
exactness math. Gadgets that help process capacity
2.0 or more help denormal numbers, and the
division and square root tasks are IEEE 754
agreeable naturally. Be that as it may, clients can
acquire the earlier quicker gaming-review math of
register capacity 1.x gadgets if wanted by setting
compiler banners to debilitate exact divisions and
precise square roots, and empower flushing
denormal numbers to zero.

2. CUDA Programming Model

The CUDA Programming Model is based on:

 Minimal extension of C and C++ languages.

 Write a serial program that calls parallel kernels.

 Serial portions execute on the host CPU.

 A kernel executes as parallel threads on the GPU
device:

 Kernels may be simple functions or full programs.
Many threads execute each kernel.

The CUDA parallel programming model stresses two key
plan objectives. To start with, it intends to expand a standard
successive programming dialect, particularly C/C++, with a
moderate arrangement of deliberations for communicating
parallelism. Extensively, this gives the software engineer a
chance to center around the vital issues of parallelism—how
to make effective parallel calculations—as opposed to
catching with the mechanics of a new and muddled dialect.
Second, it is composed for composing exceedingly versatile
parallel code that can keep running crosswise over a huge
number of simultaneous strings and several processor
centers. This is fundamental in light of the fact that the
physical parallelism of current NVIDIA GPUs ranges from
eight processor centers and 768 string settings up to 240
processor centers and 30,720 string settings. The CUDA
demonstrate normally controls the developer to compose
parallel projects that straightforwardly and productively
scale over these diverse levels of parallelism.

A CUDA program is sorted out into a have program,
comprising of at least one successive strings running on the
host CPU, and at least one parallel portions that are
reasonable for execution on a parallel preparing gadget like
the GPU. A portion executes a scalar successive program on a
set of parallel strings. The software engineer sorts out these

strings into a matrix of string squares. The strings of a
solitary string square are permitted to synchronize with each
other by means of obstructions and approach a rapid, per-
square shared on-chip memory for interthread
correspondence. Strings from various obstructs in a similar
network can organize just through tasks in a mutual global
memory space obvious to all strings. CUDA requires that
string squares be autonomous, implying that a piece must
execute effectively regardless of the request in which squares
are run, regardless of whether all squares are executed
consecutively in subjective request without acquisition. This
confinement on the conditions between squares of a bit gives
adaptability. It likewise infers that the requirement for global
correspondence or synchronization among strings is the
fundamental thought in breaking down parallel work into
particular pieces.

3. CUDA Grids of Thread Blocks

In CUDA the kernel threads are organized into grids of thread
blocks as shown in the figure:

Fig -1: CUDA Threading Model

We can see that each kernel thread is assigned to each Grid
in GPU. These Grids have multiple Blocks which contain the
threads.

Each Block has a number of threads assigned to it. And there
are multiple threads for each block.

Differences between CUDA and CPU threads:

 CUDA threads are extremely lightweight.

 CUDA uses 1000s of threads to achieve
efficiency.

4. Application experience with CUDA

Numerous applications comprise of a blend of in a general
sense serial control rationale and characteristically parallel
calculation. Moreover, these parallel calculations are much of
the time information parallel in nature. This
straightforwardly coordinates the program display that
CUDA embraces, to be specific a successive control string fit
for propelling a progression of parallel pieces. The utilization
of parallel pieces propelled from a consecutive program

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 06 | June -2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1677

moreover makes it generally simple to parallelize an
application's individual parts, instead of requiring a discount
modifying of the whole application.

 Most Applications are accelerated using CUDA to
achieve significant parallel speed-ups. CUDA is used in both
academic and industrial products. Its applications are:

 Molecular Dynamics

 Fluid Dynamics

 Seismic Imaging

 Medical Imaging

 Numerical Linear Algebra

4.1 Molecular Dynamics

 Molecular dynamic simulations are inherently
parallel calculations and are in a perfect world suited to the
CUDA programming model. Amid each time step of the
reenactment, the program must ascertain the powers
following up on all iotas and utilize the subsequent powers
to coordinate atom positions and speeds forward to the
subsequent stage. The distinctive assignments required in a
period step can each be executed in a different piece.
Because each atom can be handled freely of the others amid
a solitary time step, it is normal to outline small to a solitary
string. Therefore, the application normally gives the vast
measure of fine-grained parallelism for which the GPU is
planned, and a few sub-atomic dynamics10 and sub-atomic
demonstrating codes have been effectively accelerated with
CUDA.

4.2 Fluid Dynamics

 Physical stimulations based on finite element, difference
and volume are similar but not usually parallelized as
molecular dynamics. However, by embracing a blocking
system comparative to those utilized as a part of grid
increase and picture handling, calculations of this sort can
additionally, be changed into exceptionally parallel
calculations.

4.3 Seismic Imaging

 The Petroleum Industry uses seismic data of Earth’s
subsurface need CUDA for constructing images to find oil
and gas. A seismic review of a forthcoming area will
ordinarily comprise of many a huge number of seismic
analyses. Each analyze includes an indiscreet acoustic source
that creates a flag that engenders up to several kilometers
through the subsurface, reflects off the interfaces between
shake layers, and is recorded by a couple thousand weight
touchy beneficiaries at the surface. This obtaining procedure
produces terabytes of seismic information.

4.4 Medical Imaging

 In Medical Field the use of imaging is very useful.
Various scans like Ultrasounds and X-rays including 3D
scans are popular nowadays. Unlike conventional ultrasound
imaging, in which reflected ultrasound is used to form
images, inverse-scattering uses ultrasound transmitted
through, refracted by, and scattered by tissue or muscle to
generate high-resolution speed and attenuation ofsound
images.

4.5 Numerical Linear Algebra

 Dense matrix-matrix multiplication, especially as given
by the BLAS library

GEMM routines, is one of the essential building blocks of
numerical linear algebra algorithms. It is likewise a
characteristic fit for CUDA what's more, the GPU in light of
the fact that it is innately parallel and can normally be shown
as a blocked computation.

5. CONCLUSIONS

The Paper has been done in such a way that it explains the
concept of CUDA. This paper explains the concept CUDA as
well as also specifies its Applications. It gives the broad
understanding on how it helps us to do parallel computing.

ACKNOWLEDGEMENT

This acknowledgement is a small effort to express my
gratitude to all those who have assisted us during the course
of preparing the paper.We are greatly indebted to express
our pleasure and sense of gratitude towards our guide and
mentor Prof. Meenakshi Garg for their constant support and
valuable encouragement.

REFERENCES

1. "Nvidia CUDA Home Page"

2. Abi-Chahla, Fedy (June 18, 2008). "Nvidia's CUDA:

The End of the CPU?". Tom's Hardware.

Retrieved May 17, 2015.

3. Shimpi, Anand Lal; Wilson, Derek (November 8,

2006). "Nvidia's GeForce 8800 (G80): GPUs Re-

architected for DirectX 10". AnandTech.

Retrieved May 16, 2015.

4. PARALLEL COMPUTING EXPERIENCES WITH

CUDA

5. Michael Garland,Scott Le Grand, John Nickolls

6. NVIDIA

http://www.tomshardware.com/reviews/nvidia-cuda-gpu,1954.html
http://www.tomshardware.com/reviews/nvidia-cuda-gpu,1954.html

